# **Proficiency Testing**

# **Food Microbiology**

January 2018

Jonas Ilbäck







Edition Version 1 (2018-04-19)

Editor in chief

Hans Lindmark, head of Biology department, National Food Agency

Responsible for the scheme

Jonas Ilbäck, microbiologist, Biology department, National Food Agency

PT January 2018 is registered as no. 2017/03176 at the National Food Agency.

# Proficiency Testing Microbiology – Food

January 2018



Accred. no. 1457 Proficiency testing ISO/IEC 17043

# **Quantitative analyses**

- Aerobic microorganisms, 30 °C
- Enterobacteriaceae
- Thermotolerant Campylobacter
- Listeria monocytogenes

# **Qualitative analyses**

- Thermotolerant Campylobacter
- Listeria monocytogenes
- Salmonella
- Escherichia coli O157
- Pathogenic Vibrio spp.
- Yersinia enterocolitica

# **Abbreviations**

Media

ALOA Agar for *Listeria* according to Ottaviani & Agosti

APW 2% Alcaline peptone water, 2 % NaCl

BGA Brilliant Green Agar BPW Buffered Peptone Water

BS Bromthymol blue Saccharose agar CIN Cefsulodin Irgasan Novobiocin agar

CT-SMAC Cefixime Tellurite Sorbitol MacConkey agar ITC Irgasan Ticarcillin potassium Chlorate broth

LMBA Listeria monocytogenes Blood Agar

mCCDA Modified Charcoal Cephoperazone Deoxycholate Agar MKTTn Muller-Kauffmann Tetrathionate/novobiocin broth

MPCA Milk Plate Count Agar MRB Modified Rappaport Broth

MSRV Modified Semi-solid Rappaport-Vassiliadis enrichment media

mTSB Modified Tryptone Soya Broth OCLA Oxoid Brilliance<sup>TM</sup> Listeria agar PSB Peptone Sorbitol Bile salts broth

PCA Plate Count Agar

RVS Rappaport-Vassiliadis Soy peptone broth

SMAC Sorbitol MacConkey agar SP Salt Polymyxin broth

SSDC Salmonella/Shigella Sodium Deoxycholate Calcium chloride agar

TCBS Thiosulphate Citrate Bile salts Sucrose agar

TGE Tryptone Glucose Extract agar

TSA Tryptic Soya Agar

TSBY Tryptone Soya Broth with Yeast extract XLD Xylose Lysine Deoxycholate agar VRBG Violet Red Bile Glucose agar

#### **Organisations**

AOAC AOAC International

AFNOR French National Standardisation Association ISO International Organization for Standardization

NMKL Nordic Committee for Food Analyses

SLV/NFA Livsmedelsverket/National Food Agency, Sweden

# **Contents**

| General information on results evaluation                    | 4  |
|--------------------------------------------------------------|----|
| Results of the PT round January 2018                         | 5  |
| - General outcome                                            | 5  |
| - Aerobic microorganisms, 30 °C                              | 6  |
| - Enterobacteriaceae                                         | 8  |
| - Thermotolerant Campylobacter                               | 10 |
| - Listeria monocytogenes                                     | 11 |
| - Salmonella                                                 |    |
| - Escherichia coli O157                                      | 15 |
| - Pathogenic Vibrio spp.                                     | 16 |
| - Yersinia enterocolitica                                    | 18 |
| Outcome of the results of individual laboratory – assessment | 20 |
| - Box plot                                                   |    |
| Test material and quality control                            | 26 |
| - Test material                                              |    |
| - Quality control of the mixtures                            | 27 |
| References                                                   | 28 |
| Annex 1: Results obtained by the participants                |    |

Annex 2: z-scores of all participants

## General information on results evaluation

#### Statistical evaluation of the results

Highly deviating values that did not belong to a strictly normal distribution after  $\log_{10}$  transformation were identified as statistical outliers (Grubbs' test modified by Kelly (1)). In some cases, subjective adjustments were made to set limits based on knowledge of the mixture's contents. Outliers and false results were not included in the calculations of means and standard deviations. Results reported as "> value" were excluded from the evaluation. Results reported as "< value" were interpreted as being zero (negative result). All reported results are presented in Annex 1.

According to EN ISO/IEC 17043, for which the proficiency testing programme is accredited, it is mandatory for the participating laboratories to report method information for all their analyses. Method information is sometimes difficult to interpret, since many laboratories report a medium that that is not included in the standard method they refer to. Results from laboratories that report contradictory data on methods/media have either been excluded from the method analysis, or been added to the group of "Others", together with results from methods and media that are only used by 1-2 laboratories.

Mean values and standard deviations are normally provided for the different analyses. When the total number of reported results for an analysis is fewer than 20, the median is provided instead of the mean value. For method groups with fewer than 5 results, only the number of false results and outliers are provided.

#### Uncertainty of measurement for the assigned values

The uncertainty of measurement for an assigned value is calculated as the standard deviation divided by the square root of the number of correct results ("standard error"). The assigned value of evaluated parameters is the mean value of the participants results.

#### Table and figure legends

#### **Tables**

- N number of laboratories that performed the analysis
- n number of laboratories with satisfactory result
- m mean value in  $\log_{10}$  cfu ml<sup>-1</sup> (false results and outliers excluded)
- s standard deviation (false results and outliers excluded)
- F number of false positive or false negative results
- < number of low outliers
- > number of high outliers
- global results for the analysis
- values discussed in the text

#### **Figures**

Histograms of the analytical results for each mixture are presented. The mean value of the results is indicated in each histogram.

- values within the interval of acceptance (Annex 1)
- outliers
- ☐ false negative results
- \* values outside of the x-axis scale

# Results of the PT round January 2018

#### **General outcome**

Samples were sent to 154 laboratories, 32 in Sweden, 106 in other European countries, and 16 outside Europe. Of the 144 laboratories that reported results, 44 (31 %) provided at least one result that received an annotation. In the previous round with similar analyses (January 2017), the proportion was 44 %.

Individual results for each analysis of the PT round are listed in Annex 1 and are also available on the website after logging in: <a href="www2.slv.se/absint">www2.slv.se/absint</a>.

**Table 1** Microorganisms in each mixture and % of deviating results (N: number of reported results, F%: false positive or false negative, X%: outliers).

|                                                            |          | Mix                                                                             | ture A                                                                                                                                                                                                                 |                            |    | Mix                                                                               | ture B |     |   | Mix             | ture C          |       |   |
|------------------------------------------------------------|----------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----|-----------------------------------------------------------------------------------|--------|-----|---|-----------------|-----------------|-------|---|
| % participan 0 annotatio 1 annotatio annotation >2 annotat | on<br>on | 17%                                                                             | %                                                                                                                                                                                                                      | 82%                        | ć  | 9%                                                                                | %      | 90% | j | 7% 2%           | 6 1%            | 90%   | 6 |
| Microroganis                                               | sms      | Campylobacter je,<br>Proteus mirabilis<br>Salmonella Enteri<br>Vibrio parahaemo | tidis                                                                                                                                                                                                                  |                            |    | Escherichia coli<br>Kocuria rhizophila<br>Salmonella Stocki<br>Yersinia enterocol | olm    |     |   |                 | genes<br>prophy | ticus |   |
| Analysis                                                   |          | Target<br>organism                                                              | N                                                                                                                                                                                                                      | F%                         | X% | Yersinia intermedia  X% Target organism N F% X% Target organism N F% X%           |        |     |   | X%              |                 |       |   |
| Aerobic micro<br>organisms 30                              |          | All                                                                             | N         F%         X%         Target organism         N         F%         X%         Target organism         N           120         0         3         All         120         0         1         All         12 |                            |    |                                                                                   | 120    | 0   | 2 |                 |                 |       |   |
| Enterobacteria                                             | aceae    | P. mirabilis                                                                    | 104                                                                                                                                                                                                                    | 20 0 3 All 120 0 1 All 120 |    |                                                                                   | 105    | 1   | 1 |                 |                 |       |   |
| Thermo-<br>tolerant                                        | Quant.   | C iniumi                                                                        | 16                                                                                                                                                                                                                     | 6                          | 0  | (E. coli)                                                                         | 17     | 6   | 0 |                 | 17              | 0     | 0 |
| Campylo-<br>bacter                                         | Qual.    | C. jejuni                                                                       | 25                                                                                                                                                                                                                     | 0                          | -  | (E. cou)                                                                          | 25     | 8   | - | -               | 25              | 0     | - |
| L. mono-                                                   | Quant.   |                                                                                 | 67                                                                                                                                                                                                                     | 1                          | 0  |                                                                                   | 67     | 0   | 0 | L. mono-        | 67              | 3     | 3 |
| cytogenes                                                  | Qual.    | -                                                                               | 98                                                                                                                                                                                                                     | 1                          | -  | -                                                                                 | 98     | 0   | - | cytogenes       | 98              | 3     | - |
| Salmonella                                                 |          | S. Enteritidis                                                                  | 114                                                                                                                                                                                                                    | 3                          | -  | S. Stockholm                                                                      | 114    | 4   | - | -               | 114             | 4     | - |
| E. coli O157                                               |          | -                                                                               | 24                                                                                                                                                                                                                     | 0                          | -  | -                                                                                 | 24     | 13  | - | E. coli O157    | 24              | 13    | - |
| Pathogenic Vibrio spp.                                     |          | V. para-<br>haemolyticus                                                        | 19                                                                                                                                                                                                                     | 11                         | 1  | -                                                                                 | 19     | 0   | 1 | V. cholerae     | 19              | 5     | - |
| Y. enterocoliti                                            | ica      | -                                                                               | 14                                                                                                                                                                                                                     | 0                          | -  | Y. enterocolitica                                                                 | 14     | 7   | - | (Y. intermedia) | 14              | 7     | - |

<sup>-</sup> no target organism or no value; (microorganism) false positive before confirmation

<sup>\*</sup> the results are not evaluated

# Aerobic microorganisms, 30 °C

#### Mixture A

The strain of *Proteus mirabilis* was present in the highest concentration and was main target organism for the analysis. The results were distributed around a distinct peak, and two low and two high outliers were reported. Three laboratories reported swarming of the strain on the plates; problems with counting colonies however does not appear to have been an overall issue for the laboratories.

#### Mixture B

The strains of *Escherichia coli* and *Kocuria rhizophila* were present in the highest concentrations and were the main target organisms for the analysis. The results were distributed around a distinct peak. One low outlier was reported.

#### **Mixture C**

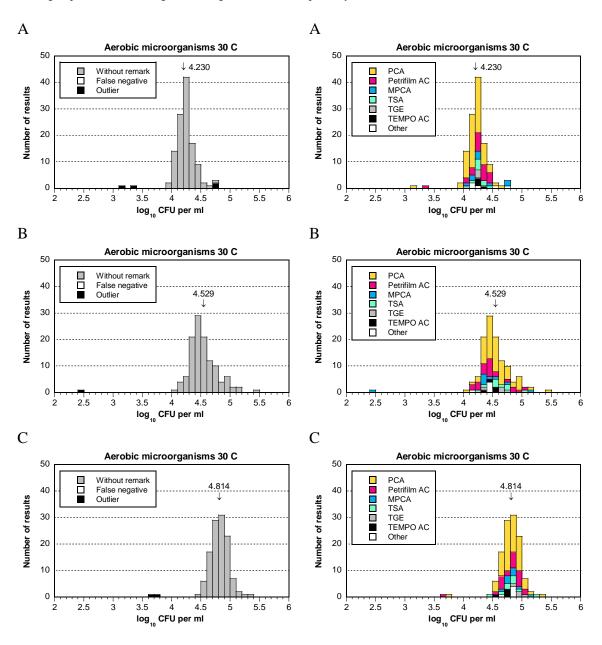
The strains of *Hafnia alvei* and *Staphylococcus saprophyticus* were present in the highest concentrations and were the main target organisms for the analysis. The results were distributed around a distinct peak, and two low outliers were reported.

#### **General remarks**

As a whole, the analyses were unproblematic for the laboratories. The mean values for the different methods and media were similar. Outliers could not be attributed to the use of a specific method or medium.

The majority of the laboratories followed either NMKL 86:2013 (33 %), ISO 4833-1:2013 (22 %) or used 3M<sup>TM</sup> Petrifilm<sup>TM</sup> Aerobic Count (19 %). Compared to previous PT rounds, only a small number of laboratories followed the older versions NMKL 86:2003 or ISO 4833:2003. Four laboratories (3 %) used TEMPO<sup>®</sup> AC (bioMérieux<sup>®</sup> SA, Marcy l'Etoile, France), which is based on MPN (Most Probable Number). The sample is here incubated in a card that contains small wells with different volumes. A substrate in the card emits fluorescence when hydrolysed by the microorganisms, and the concentration is determined by the emitted fluorescence. The remaining 10 % of the laboratories followed national or laboratory/company-specific methods.

Both the NMKL and ISO methods prescribe incubation on Plate Count Agar (PCA) at 30 °C for 72 h. For Petrifilm AC there is however a variation, depending on which method that is followed. For example, AOAC® 990.12 prescribes incubation at 35 °C for 48 h while AFNOR 3M 01/1-09/89 prescribes 30 °C for 72 h.


In addition to PCA and Petrifilm AC, Milk Plate Count Agar (MPCA), Tryptic Soya Agar (TSA) and Tryptone Glucose Extract agar (TGE) were used.

Note: After the publication of the preliminary results, a few laboratories have noted that some of their results were incorrectly reported. E.g. the two low outliers for mixture A are (according to the laboratories themselves) incorrectly reported, and the correct results are within the accepted intervals for the analysis. The same has been noted for one of the low outliers for mixture C. Corrections of the reported results are however not possible to make after the publication of the preliminary results. The first reported values have therefore been used in the statistical evaluation, and they also remain in tables and figures in this report.

Results from analysis of aerobic microorganisms

| Medium       | N   |     | Mi    | xture A |   |   |   |     | Mi    | xture B | ; |   |   |     | Mi    | xture C | • |   |   |
|--------------|-----|-----|-------|---------|---|---|---|-----|-------|---------|---|---|---|-----|-------|---------|---|---|---|
| Medium       | 1   | n   | m     | s       | F | < | > | n   | m     | s       | F | < | > | n   | m     | s       | F | < | > |
| All results  | 120 | 116 | 4.230 | 0.134   | 0 | 2 | 2 | 119 | 4.529 | 0.235   | 0 | 1 | 0 | 118 | 4.814 | 0.152   | 0 | 2 | 0 |
| PCA          | 67  | 66  | 4.199 | 0.127   | 0 | 1 | 0 | 66  | 4.551 | 0.234   | 0 | 0 | 0 | 65  | 4.809 | 0.155   | 0 | 1 | 0 |
| Petrifilm AC | 23  | 22  | 4.271 | 0.126   | 0 | 1 | 0 | 23  | 4.473 | 0.262   | 0 | 0 | 0 | 22  | 4.827 | 0.147   | 0 | 1 | 0 |
| MPCA         | 9   | 8   | 4.282 | 0.210   | 0 | 0 | 1 | 8   | 4.539 | 0.272   | 0 | 1 | 0 | 9   | 4.826 | 0.135   | 0 | 0 | 0 |
| TSA          | 8   | 8   | 4.290 | 0.101   | 0 | 0 | 0 | 9   | 4.586 | 0.240   | 0 | 0 | 0 | 9   | 4.810 | 0.202   | 0 | 0 | 0 |
| TGE          | 4   | 4   | -     | -       | 0 | 0 | 0 | 4   | -     | -       | 0 | 0 | 0 | 4   | -     | -       | 0 | 0 | 0 |
| TEMPO AC     | 4   | 4   | -     | -       | 0 | 0 | 0 | 4   | -     | -       | 0 | 0 | 0 | 4   | -     | -       | 0 | 0 | 0 |
| Other*       | 5   | 4   | 4.266 | 0.177   | 0 | 0 | 1 | 5   | 4.385 | 0.152   | 0 | 0 | 0 | 5   | 4.799 | 0.085   | 0 | 0 | 0 |

<sup>\*</sup> The group Other includes e.g. nutrient agar (NA) and Compact Dry<sup>TM</sup> TC.



#### Enterobacteriaceae

#### Mixture A

The strain of *Proteus mirabilis* was target organism for the analysis. The majority of the results were distributed around a distinct peak. However nine low outliers were reported, as well as six false negative results. The same mixture was used in the PT round January 2017 – and similar number of deviating results were reported at that time. Among users of 3M<sup>TM</sup> Petrifilm<sup>TM</sup> Enterobacteriaceae (Petrifilm EB) only one low outlier was reported, and it is possible that *P. mirabilis* was easier to distinguish due to the colour indicator present in this medium. Low outliers and false negative results in the mixture were otherwise reported almost exclusively by users of Violet Red Bile Glucose agar (VRBG), which however at the same time was the most common medium.

#### Mixture B

The strain of *Escherichia coli* was target organism for the analysis. The results were distributed around a distinct peak, and two low and two high outliers were reported.

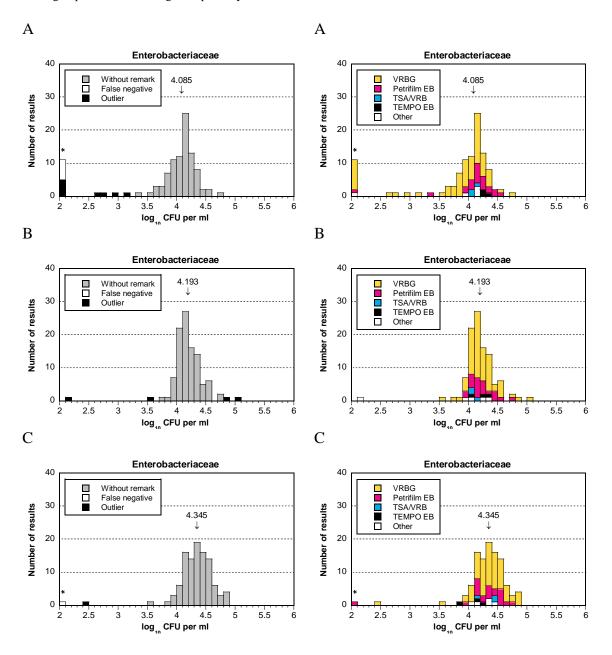
#### **Mixture C**

The strain of *Hafnia alvei* was target organism. The results were distributed around a distinct peak, and one low outlier and one false negative result were reported.

#### General remarks

As a whole, the analyses were unproblematic for the laboratories. The exceptions were the low outliers and the false negative results for mixture A. The mean values for the different methods and media were however very similar, for all three mixtures.

As in previous PT rounds, most laboratories reported following either NMKL 144:2005 (47 %), Petrifilm EB (21 %) or ISO 21528-2:2004 (11 %). Six laboratories (6 %) stated that they followed ISO 21528-1:2004, which is a method based on MPN (Most Probable Number) for the analysis of Enterobacteriaceae. The two ISO methods were during 2017 replaced by ISO 21528-1:2017 (MPN) and ISO 21528-2:2017 (colony-count technique). The MPN method is recommended when the expected level of Enterobacteriaceae is lower than 100 cfu g<sup>-1</sup>. The new ISO methods were however not implemented by more than a few laboratories. Three laboratories reported following ISO 21528-2:2017, whereas no laboratory reported following ISO 21528-1:2017. Still, the mean values were highly similar, irrespective of which ISO version that was used, for all three mixtures. As in the analysis of aerobic microorganisms, a few laboratories used fluorescence-based methods (TEMPO® Enterobacteriaceae).


Enterobacteriaceae are Gram-negative and oxidase-negative bacteria that ferment glucose with the production of acid by-products. On VRBG – which is used in both NMKL 144 and ISO 21528-2 – they form pink/red colonies, with our without a bile precipitation zone. The appearance is similar on Petrifilm EB, which also includes a colour indicator for the detection of acid by-products and a plastic film for detection of gas production. It is possible that these factors contributed to the low numbers of false negative results and low outliers for Petrifilm EB.

Presumptive colonies in VRBG shall according to NMKL 144:2005 be confirmed with an oxidase test. In comparison, ISO 21528-2:2004 states that presumptive colonies shall be confirmed with both an oxidase test and a glucose fermentation test. In the new revision ISO 21528-2:2017 this has been modified slightly and glucose agar has been replaced by glucose oxidation/fermentation (OF) medium. Oxidase-negative colonies that produce acid from glucose in the OF medium are confirmed as Enterobacteriaceae.

Results from analysis of Enterobacteriaceae

| Medium       | N   |    | Mi    | ixture A | 1 |   |   |     | Mi    | xture B | 3 |   |   |     | Mi    | xture C | 1 |   |   |
|--------------|-----|----|-------|----------|---|---|---|-----|-------|---------|---|---|---|-----|-------|---------|---|---|---|
| Medium       | 11  | n  | m     | s        | F | < | > | n   | m     | s       | F | < | > | n   | m     | s       | F | < | > |
| All results  | 105 | 89 | 4.085 | 0.224    | 6 | 9 | 0 | 101 | 4.193 | 0.175   | 0 | 2 | 2 | 103 | 4.345 | 0.232   | 1 | 1 | 0 |
| VRBG         | 72  | 58 | 4.052 | 0.226    | 5 | 8 | 0 | 69  | 4.189 | 0.174   | 0 | 1 | 2 | 71  | 4.359 | 0.242   | 0 | 1 | 0 |
| Petrifilm EB | 22  | 21 | 4.149 | 0.242    | 0 | 1 | 0 | 22  | 4.216 | 0.197   | 0 | 0 | 0 | 21  | 4.356 | 0.201   | 1 | 0 | 0 |
| TSA/VRB      | 3   | 3  | -     | -        | 0 | 0 | 0 | 3   | -     | -       | 0 | 0 | 0 | 3   | -     | -       | 0 | 0 | 0 |
| TEMPO EB     | 3   | 3  | -     | -        | 0 | 0 | 0 | 3   | -     | -       | 0 | 0 | 0 | 3   | -     | -       | 0 | 0 | 0 |
| Other*       | 5   | 4  | 4.064 | 0.096    | 1 | 0 | 0 | 4   | 4.150 | 0.156   | 0 | 1 | 0 | 5   | 4.258 | 0.203   | 0 | 0 | 0 |

<sup>\*</sup> The group Other includes e.g. Compact Dry<sup>TM</sup> ETB.



# Thermotolerant Campylobacter

#### Mixture A

The strain of *Campylobacter jejuni* was target organism for the analysis. One laboratory reported a false negative result in the quantitative analysis.

#### Mixture B

No target organism was present in mixture B. Laboratories may however have identified *Escherichia coli*, which is false positive for the analysis. False positive results were reported by one laboratory in the quantitative analysis and by two laboratories in the qualitative analysis.

#### **Mixture C**

No target organism was present in the mixture. All laboratories reported correct results, in both the quantitative and in the qualitative analysis.

#### **General remarks**

Only 17 and 25 laboratories participated in the quantitative and qualitative analysis, respectively. The results are therefore difficult to evaluate statistically. However, the analyses appear to have been unproblematic for the majority of the laboratories.

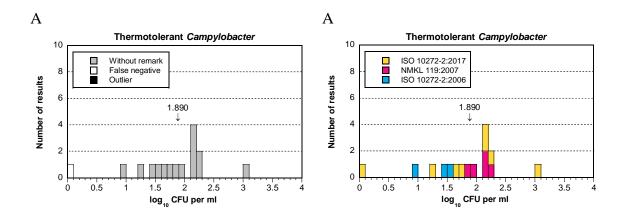
NMKL 119 and ISO 10272 (different versions) were the most used methods in both the quantitative and the qualitative analysis. The majority of the laboratories had also started using the new ISO 10271-2:2017 and 10272-2:2017 instead of the older ISO 10272-1:2006 and 10272-2:2006. The three laboratories that followed the older ISO 10272-2:2006 in the quantitative analysis all reported lower results compared to the other methods, but it cannot be ruled out that it is simply due to chance. In the qualitative analysis, one laboratory stated that they followed ISO 17995, which is a method for detection of *Campylobacter* in water. Here, it can also be mentioned that NMKL 119:2007 being revised and the new version will likely be more similar to the new ISO 10272-2:2017 and 10272-1:2017.

The results in the quantitative analysis had a relatively large distribution, something that has been observed in several earlier PT rounds. *Campylobacter* spp. are sensitive to mechanical stress and to dehydration. Differences in the results might therefore be a consequence of a too harsh surface spreading. At the National Food Agency, *Campylobacter* spp. are carefully spread onto pre-warmed plates and the final drying of the bacterial suspension is done by leaving the lids of the plates slightly open (maximum five minutes).

The majority of the laboratories (76 %) in the qualitative analysis used Bolton broth for the enrichment step, but Preston broth was also used. In the selective step, most laboratories used modified charcoal cephoperazone deoxycholate agar (mCCDA) (84 %) but CampyFood Agar and CHROMagar<sup>TM</sup> were also used. In the quantitative analysis all laboratories except one reported using mCCDA.

All laboratories except one in each analysis reported performing some kind of confirmation. *Campylobacter* spp. are Gram-negative, oxidase-positive and catalase-positive – they can also be confirmed by their appearance in a microscope. The bacteria are normally spiral-shaped rods that display a characteristic darting/rotating movement. *C. jejuni*, *C. coli* and *C. lari* can further be separated by differences in their hydrolysis of hippurate and indoxyl acetate, and their sensitivity/resistance to nalidixic acid and cephalothin. A few laboratories in this PT also reported using Maldi-TOF or API<sup>®</sup> CAMPY for the confirmation.

Results from quantitative analysis of thermotolerant Campylobacter


| Method           | N  |    | Mixt | ure | Α |   |   |    | Mi | ixtu | ire l | В |   |    | Mi | xtu | re ( | С |   |
|------------------|----|----|------|-----|---|---|---|----|----|------|-------|---|---|----|----|-----|------|---|---|
| Method           | 11 | n  | Med* | s   | F | < | > | n  | m  | s    | F     | < | > | n  | m  | s   | F    | < | > |
| All results      | 17 | 15 | 1.97 | -   | 1 | 0 | 0 | 16 | -  | -    | 1     | - | - | 17 | -  | -   | 0    | - | - |
| ISO 10272-2:2017 | 9  | 7  | 2.10 | -   | 1 | 0 | 0 | 8  | -  | -    | 1     | - | - | 9  | -  | -   | 0    | - | - |
| NMKL 119:2007    | 5  | 5  | 2.10 | -   | 0 | 0 | 0 | 5  | -  | -    | 0     | - | - | 5  | -  | -   | 0    | - | - |
| ISO 10272-2:2006 | 3  | 3  | -    | -   | 0 | 0 | 0 | 3  | -  | -    | 0     | - | - | 3  | -  | -   | 0    | - | - |
| Other            | 0  | -  | -    | -   | - | - | - | -  | -  | -    | -     | - | - | -  | -  | -   | -    | - | - |

<sup>\*</sup> Med = median

Results from qualitative analysis of thermotolerant Campylobacter

| Madhad           | N  | M  | lixture | A | N. | Iixture | В | M  | lixture | C |
|------------------|----|----|---------|---|----|---------|---|----|---------|---|
| Method           | IN | n  | +/-     | F | n  | +/-     | F | n  | +/-     | F |
| All results      | 25 | 25 | Pos     | 0 | 23 | Neg     | 2 | 25 | Neg     | 0 |
| NMKL 119:2007    | 13 | 13 | Pos     | 0 | 11 | Neg     | 2 | 13 | Neg     | 0 |
| ISO 10272-1:2017 | 6  | 6  | Pos     | 0 | 6  | Neg     | 0 | 6  | Neg     | 0 |
| ISO 10272-1:2006 | 3  | 3  | Pos     | 0 | 3  | Neg     | 0 | 3  | Neg     | 0 |
| Other*           | 3  | 3  | Pos     | 0 | 3  | Neg     | 0 | 3  | Neg     | 0 |

<sup>\*</sup> The group Other includes e.g. ISO 17995, VIDAS, and one PCR method.



# Listeria monocytogenes

#### Mixture A

No target organism for the analysis was present in the mixture. One laboratory in the quantitative analysis and one laboratory in the qualitative analysis reported a false positive result.

## **Mixture B**

No target organism for the analysis was present in the mixture. All laboratories in both the quantitative and the qualitative analysis reported correct results.

#### Mixture C

The strain of *Listeria monocytogenes* was target organism. The results in the quantitative analysis were distributed around a distinct peak and two low outliers, as

well as two false negative results were reported. In the qualitative analysis, three false negative results were reported.

#### **General remarks**

As a whole, the analyses were without major problems for the laboratories. Outliers and false results could not be attributed to the use of a specific method or medium.

New versions of ISO 11290-1 (qualitative) and 11290-2 (quantitative) were published during 2017. The revised methods distinguish between detection/enumeration of *Listeria* spp. and *Listeria monocytogenes*, and changes have also been made e.g. in which confirmation tests that should be performed. The qualitative method ISO 11290-1:2017 is based on primary enrichment in half-Fraser broth, followed by secondary enrichment in Fraser broth. Aliquots from both enrichments are plated onto selective agar for *Listeria* according to Ottaviani & Agosti (ALOA) and onto another selective medium chosen by the laboratory. In the quantitative method ISO 11290-2:2017 the sample is first suspended in buffered peptone water (BPW) or in half-Fraser broth and material is then transferred from these to ALOA. The quantitative and qualitative methods used in NMKL 136:2010 are similar to the ones in the ISO methods.

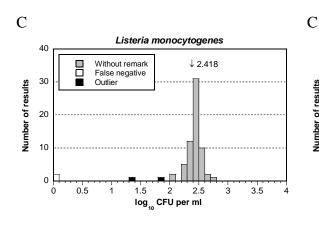
Typical colonies of *L. monocytogenes* are on ALOA blue-green due to  $\beta$ -glucosidase activity, and are surrounded by an opaque halo due to hydrolysis of inositol in the medium. The halo is sometimes weak, or may not be present at all. *L. monocytogenes* can be confirmed by microscopy, catalase test, and by tests of  $\beta$ -haemolysis and carbohydrate utilazation (fermentation of rhamnose and xylose). *L. monocytogenes* is catalase-positive, displays  $\beta$ -haemolysis on blood agar, and ferments rhamnose but not xylose. Confirmation can also be done by the increased and decreased  $\beta$ -haemolysis displayed by *L. monocytogenes* in the presence of *Staphylococcus aureus* and *Rhodococcus equi* respectively (CAMP test).

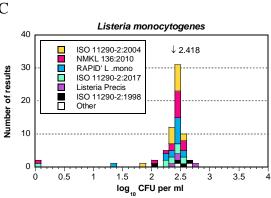
ISO 11290-1 and ISO 11290-2 were the most commonly used methods in both the quantitative and the qualitative analysis (29 % and 45 % of the laboratories respectively). The majority of the laboratories however still followed the older versions of the respective methods. In addition to ISO 11290 and NMKL 136, many laboratories used RAPID'L.mono or VIDAS<sup>®</sup>. Listeria Precis<sup>TM</sup> was also used by a few laboratories in both analyses. RAPID'L.mono uses a chromogenic medium that identifies the enzyme phosphatidylinositol phospholipase C (PI-PLC) in *L. monocytogens*, and that also identifies both *Listeria* spp. and *L. monocytogens* by the fact that they do not metabolize xylose. The method in Listeria Precis<sup>TM</sup> in a similar way uses a chromogenic medium that detects *Listeria* spp. and *L. monocytogenes* β-glucosidase cleavage of X-glucoside in the medium Brilliance<sup>TM</sup> Listeria. In comparison, VIDAS<sup>®</sup> is based on detection of specific *L. monocytogenes* antigen, by a method based on ELFA (*Enzyme Linked Fluorescent Assay*). The alternative methods are all validated by AFNOR and/or NordVal.

As in previous proficiency testing rounds, ALOA and Oxoid Brilliance<sup>TM</sup> Listeria-agar (previously OCLA) were the most used media. However PALCAM, Listeria monocytogenes blood agar (LMBA), Oxford Listeria selective agar, and other types of chromogenic media were also used. Confirmation was carried out by most laboratories. In total, confirmation (in various forms) was carried out by 85 % and 88 % of the laboratories in the qualitative and quantitative analyses respectively.

Results from quantitative analysis of Listeria monocytogenes

| Method                          | N  |    | Mi | xtu | re A |   |   |    | Mi | xtu | re B | } |   |    | M     | ixture C |   |   |   |
|---------------------------------|----|----|----|-----|------|---|---|----|----|-----|------|---|---|----|-------|----------|---|---|---|
| Method                          | 1  | n  | m  | s   | F    | < | > | n  | m  | s   | F    | < | > | n  | m     | s        | F | < | > |
| All results                     | 67 | 66 | -  | -   | 1    | - | ı | 67 | -  | -   | 0    | - | - | 63 | 2.418 | 0.114    | 2 | 2 | 0 |
| ISO 11290-2:1998<br>/Amd 1:2004 | 16 | 16 | -  | -   | 0    | - | - | 16 | -  | -   | 0    | - | - | 15 | 2.405 | 0.069    | 0 | 1 | 0 |
| NMKL 136:2010*                  | 16 | 15 | -  | -   | 1    | - | 1 | 16 | -  | -   | 0    | - | - | 15 | 2.417 | 0.122    | 1 | 0 | 0 |
| RAPID'L.mono                    | 15 | 15 | -  | -   | 0    | - | 1 | 15 | -  | -   | 0    | - | - | 14 | 2.416 | 0.094    | 0 | 1 | 0 |
| ISO 11290-2:2017                | 10 | 10 | -  | -   | 0    | - | 1 | 10 | -  | -   | 0    | - | - | 9  | 2.393 | 0.110    | 1 | 0 | 0 |
| Listeria Precis                 | 4  | 4  | -  | -   | 0    | - | - | 4  | -  | -   | 0    | - | - | 4  | -     | -        | 0 | 0 | 0 |
| ISO 11290-2:1998                | 4  | 4  | -  | -   | 0    | - | - | 4  | -  | -   | 0    | - | - | 4  | -     | -        | 0 | 0 | 0 |
| Other                           | 2  | 2  | -  | -   | 0    | - | - | 2  | -  | -   | 0    | - | - | 2  | -     | -        | 0 | 0 | 0 |


<sup>\*</sup> The group NMKL 136:2010 includes one laboratory that followed NMKL 136:2007.


Results from qualitative analysis of Listeria monocytogenes

| Method                          | N  | N  | Iixture | A | N  | Iixture | В | M  | lixture | C |
|---------------------------------|----|----|---------|---|----|---------|---|----|---------|---|
| Method                          | 11 | n  | +/-     | F | n  | +/-     | F | n  | +/-     | F |
| All results                     | 98 | 97 | Neg     | 1 | 98 | Neg     | 0 | 95 | Pos     | 3 |
| RAPID'L.mono                    | 17 | 17 | Neg     | 0 | 17 | Neg     | 0 | 17 | Pos     | 0 |
| VIDAS                           | 16 | 16 | Neg     | 0 | 16 | Neg     | 0 | 16 | Pos     | 0 |
| NMKL 136:2010*                  | 14 | 13 | Neg     | 1 | 14 | Neg     | 0 | 14 | Pos     | 1 |
| ISO 11290-1:1996<br>/Amd 1:2004 | 14 | 14 | Neg     | 0 | 14 | Neg     | 0 | 14 | Pos     | 0 |
| ISO 11290-1:2017                | 12 | 12 | Neg     | 0 | 12 | Neg     | 0 | 12 | Pos     | 1 |
| PCR method                      | 9  | 9  | Neg     | 0 | 9  | Neg     | 0 | 9  | Pos     | 0 |
| Listeria Precis                 | 5  | 5  | Neg     | 0 | 5  | Neg     | 0 | 5  | Pos     | 0 |
| ISO 11290-1:1996                | 2  | 2  | Neg     | 0 | 2  | Neg     | 0 | 2  | Pos     | 0 |
| Other**                         | 9  | 9  | Neg     | 0 | 9  | Neg     | 0 | 9  | Pos     | 1 |

<sup>\*</sup> The group NMKL 136:2010 includes one laboratory that followed NMKL 136:2007.

<sup>\*\*</sup> The group Other includes IDF 143A:1995, SwabSure ListeriaP, as well as national and/or company-specific methods.





#### Mixture A

The strain of *Salmonella* Enteritidis was target organism for the analysis. Three laboratories reported a false negative result.

#### Mixture B

The strain of *Salmonella* Stockholm was target organism for the analysis. Five laboratories reported a false negative result. The concentration of the strain in the mixture was low, approximately 5 CFU ml<sup>-1</sup> in the internal tests at the National Food Agency. With the reservation that all laboratories appear to have performed some type of enrichment step, the low concentration is however unlikely to be the reason for the false negative results, unless only a very small volume was inoculated into the enrichment medium.

#### Mixture C

No target organism for the analysis was present in the mixture. Four laboratories reported a false positive result.

#### **General remarks**

Most laboratories followed the traditional methods ISO 6579-1:2017 or NMKL 71:1999, which are highly similar. Both are based on pre-enrichment in buffered peptone water (BPW), followed by selective enrichment in Rappaport-Vassiliadis soy peptone broth (RVS) and subsequent inoculation onto selective xylose lysine deoxycholate agar (XLD) and another selective medium chosen by the laboratory. In contrast to NMKL 71:1999, ISO 6579-1:2017 also includes selective enrichment in Muller-Kauffmann tetrathionate/novobiocin broth (MKTTn). RVS can also be replaced by modified semi-solid Rappaport-Vassiliadis enrichment media (MSRV) for the analysis of motile *Salmonella*. Confirmation is by biochemical (e.g. mannitol and urea) and serological (e.g. *Salmonella* polyvalent O and H antisera) tests. Confirmation (in various forms) was in this proficiency testing carried out by the majority (95 %) of the laboratories.

The new ISO 6579-1:2017 was published in the beginning of 2017 and replaced previous ISO-methods for the detection of *Salmonella*. The majority of the 33 laboratories that analysed according to ISO however still followed the older versions 6579:2002 or ISO 6579:2002/Amd 1:2007. Among the changes in the new version from 2017 are that detection of  $\beta$ -galactosidase and indole is optional in the confirmation step, whereas positive results for agglutination against both O and H antigen is required for a strain to be considered as *Salmonella*.

Users of NMKL methods can in addition to NMKL 71:1999 also choose to follow NMKL 187:2016. The latter method is intended for detection of motile *Salmonella* and, similarly to ISO 6579-1:2017, uses MSRV instead of RVS during the selective enrichment step. Notably, all three laboratories that followed NMKL 187 stated that they followed the older version NMKL 187:2006. The new version from 2016 contains clarifications regarding the choice of the selective agar medium complementary to XLD, and the concentration of Novobiocin in MSRV. It also contains new paragraphs regarding pre-enrichment of samples from primary animal production, faecal samples and swab samples.

On XLD, which was used by the majority of the laboratories, typical Salmonella form transparent red colonies with a black center. As a complementary medium to

XLD, the laboratories mainly used chromogenic media such as Brilliance<sup>TM</sup> Salmonella, Rambach<sup>TM</sup> agar, and brilliant green agar (BGA).

Similar to the analysis of *Listeria monocytogenes*, several laboratories chose to analyse with VIDAS<sup>®</sup> or RAPID'Salmonella, instead of with the traditional ISO and NMKL methods. Regardless of the choice of method or medium, the analyses were without major problem for the laboratories. No obvious differences between results from the different methods and media could be identified. No false results were reported by the 5 % of the laboratories that did not perform a confirmation.

Results from qualitative analysis of Salmonella

| Method                   | N   | N   | Mixture A | 4 | N   | Aixture l | 3 | N   | Aixture ( | 7 |
|--------------------------|-----|-----|-----------|---|-----|-----------|---|-----|-----------|---|
| Method                   | 11  | n   | +/-       | F | n   | +/-       | F | n   | +/-       | F |
| All results              | 114 | 111 | Pos       | 3 | 109 | Pos       | 5 | 110 | Neg       | 4 |
| NMKL 71:1999             | 31  | 30  | Pos       | 1 | 30  | Pos       | 1 | 31  | Neg       | 0 |
| ISO 6579-1:2017          | 15  | 15  | Pos       | 0 | 15  | Pos       | 0 | 13  | Neg       | 2 |
| VIDAS*                   | 15  | 15  | Pos       | 0 | 14  | Pos       | 1 | 15  | Neg       | 0 |
| PCR method               | 14  | 14  | Pos       | 0 | 14  | Pos       | 0 | 13  | Neg       | 1 |
| ISO 6579:2002            | 10  | 10  | Pos       | 0 | 9   | Pos       | 1 | 9   | Neg       | 1 |
| ISO 6579:2002/Amd 1:2007 | 8   | 8   | Pos       | 0 | 8   | Pos       | 0 | 8   | Neg       | 0 |
| RAPID'Salmonella         | 6   | 5   | Pos       | 1 | 6   | Pos       | 0 | 6   | Neg       | 0 |
| NMKL 187:2007            | 3   | 3   | Pos       | 0 | 3   | Pos       | 0 | 3   | Neg       | 0 |
| Other**                  | 12  | 11  | Pos       | 1 | 10  | Pos       | 2 | 12  | Neg       | 0 |

<sup>\*</sup> The group VIDAS includes two laboratories that analysed with MINI VIDAS®.

#### Escherichia coli O157

#### Mixture A

No target organism for the analysis was present in the mixture. All laboratories reported a correct negative result.

#### Mixture B

No target organism for the analysis was present in the mixture. Three laboratories reported a false positive result.

#### **Mixture C**

The strain of *Escherichia coli* O157 was target organism for the analysis. Three laboratories reported a false negative result. The concentration of the strain in the mixture was low, approximately 6 CFU ml<sup>-1</sup> in the internal tests at the National Food Agency. With the reservation that all laboratories appear to have performed some type of enrichment step, the low concentration is however unlikely to be the reason for the false negative results, unless only a very small volume was inoculated into the enrichment medium.

#### **General remarks**

Only 24 laboratories performed the analysis, and the results are therefore difficult to evaluate statistically. However no obvious differences between the methods and media

<sup>\*\*</sup> The group Other includes Neogen® Reveal® 2.0 *Salmonella*, Oxoid Salmonella Precis<sup>TM</sup>, as well as national and/or company-specific methods.

can be identified. Confirmation test (in various forms) were performed by 20 of the laboratories (83 %) which is a similar number compared to the January PT round 2017.

Most laboratories followed either of the traditional methods NMKL 164:2005 or ISO 16654:2001. The methods in these are similar: enrichment in modified tryptone soya broth (mTSB), followed by immunomagnetic separation and isolation on cefixime tellurite sorbitol MacConkey agar (CT-SMAC) and another medium selected by the laboratory. Confirmation is by a test for indole production as well as agglutination with *E. coli* O157 antiserum. Here, it can also be mentioned that NMKL 164:2005 is undergoing revision – there is however no estimated date for when a new version will be available.

The majority of the laboratories (63 %) incubated on CT-SMAC, but sorbitol MacConkey agar (SMAC) and CHROMagar<sup>TM</sup> O157 were also used. On CT-SMAC and SMAC, bacteria that ferment sorbitol (most non-pathogenic *E. coli*) are distinguished from those that do not (most *E. coli* O157). The inclusion of cefimixin and tellurite in CT-SMAC makes it more selective compared to SMAC, and it inhibits growth of many *Proteus* spp. och *Aeromonas* spp., which often are sorbitol-negative. Sorbitol-negative *E. coli* O157 form transparent colonies on CT-SMAC and SMAC, approximately 1-2 mm in diameter and with a dark center. Sorbitol-positive *E. coli* instead form red colonies on these media. In comparison, on CHROMagar<sup>TM</sup> *E. coli* O157 form mauve (purple) colonies that can be distinguished from other colonies (blue or colourless) that may grow on this medium.

Results from qualitative analysis of E. coli 0157

| Madad           | N.T. | N  | Iixture A |   | N  | Iixture B |   | M  | lixture C | : |
|-----------------|------|----|-----------|---|----|-----------|---|----|-----------|---|
| Method          | N    | n  | +/-       | F | n  | +/-       | F | n  | +/-       | F |
| All results     | 24   | 24 | Neg       | 0 | 21 | Neg       | 3 | 21 | Pos       | 3 |
| ISO 16654:2001* | 6    | 6  | Neg       | 0 | 5  | Neg       | 1 | 4  | Pos       | 2 |
| NMKL 164:2005   | 4    | 4  | Neg       | 0 | 4  | Neg       | 0 | 4  | Pos       | 0 |
| PCR method      | 4    | 4  | Neg       | 0 | 4  | Neg       | 0 | 4  | Pos       | 0 |
| VIDAS           | 3    | 3  | Neg       | 0 | 3  | Neg       | 0 | 3  | Pos       | 0 |
| Other**         | 7    | 7  | Neg       | 0 | 5  | Neg       | 2 | 6  | Pos       | 1 |

<sup>\*</sup> The group ISO 16654:2001 includes one laboratory that used a modified version of the standard.

# Pathogenic Vibrio spp.

#### Mixture A

The strain of *Vibrio parahaemolyticus* was target organism for the analysis. Two laboratories reported a false negative result.

#### Mixture B

No target organism for the analysis was present in the mixture. All laboratories reported a correct negative result.

#### **Mixture C**

The strain of *Vibrio cholerae* was target organism for the analysis. One laboratory reported a false negative result.

<sup>\*\*</sup> The group Other includes national and/or company-specific methods.

#### General remarks

Only 19 laboratories performed the analysis, and most used similar methods and media. The results are therefore difficult to evaluate statistically. The majority of the laboratories however reported correct results, and the small number of false negative results could not be attributed to the use of a specific method or medium. All laboratories except one also stated that they performed some kind of confirmation.

A new version of the ISO method, ISO 21872-1:2017, was published during 2017. It replaces the previous ISO/TS 21872-1:2007, as well as ISO/TS 21872-2:2007. The new method contains several changes, including the performance of confirmation with biochemical and/or PCR methods.

The majority of the laboratories followed either NMKL 156:1997 or ISO/TS 21872-1:2007. Only one laboratory stated that they followed the new ISO 21872-1:2017. The new ISO method follows roughly the same principle as the previous version. Primary and secondary enrichment is in alkaline peptone water with 2 % NaCl (APW 2 %) and is followed by inoculation onto selective thiosulphate citrate bile salts sucrose agar (TCBS). Another medium, chosen by the laboratory, is inoculated in parallel to TCBS. Subcultured colonies are subsequently confirmed by biochemical tests, PCR and/or real-time PCR. The procedure in NMKL 156:1997 is similar to ISO 21872-1:2017, but also includes enrichment in salt polymyxin broth (SP). The NMKL method only includes biochemical confirmation tests.

All laboratories stated that colonies were isolated on TCBS. One laboratory reported parallel isolation on CHROMagar<sup>TM</sup> Vibrio. Bile salts in TCBS inhibit the growth of Gram-positive microorganisms, whereas a high pH promotes the growth of *V. cholerae*. On this medium, *Vibrio* spp. form either green of yellow colonies, depending on if they ferment sucrose or not. *V. parahaemolyticus* and *V. vulnificus* (sucrose-negative) normally form blue-green colonies, 2-3 mm in diameter, whereas *V. cholerae* (sucrose-positive) normally form yellow colonies, 1-2 mm in diameter.

At the National Food Agency, the strain of *V. parahaemolyticus* in mixture A formed typical colonies on TCBS, regardless of whether the enrichment was carried out in APW 2 % or in SP. Similarly, the strain of *V. cholerae* in mixture C formed characteristic yellow colonies on TCBS. On a few plates, for unknown reasons, some colonies of *V. cholerae* were however smaller than the rest. Still, during the confirmation both of these colony morphologies were oxidase-positive and sensitive to vibriostaticum O129. During an initial test of mixture A, *P. mirabilis* formed small, atypical and light green colonies on TCBS. These colonies were however oxidasenegative and could therefore be distinguished from *V. parahaemolyticus* during the confirmation.

Results from qualitative analysis of pathogenic Vibrio spp.

| Method                         | N  | N  | Iixture . | A | N  | /Iixture 1 | В | N  | 1ixture ( | C |
|--------------------------------|----|----|-----------|---|----|------------|---|----|-----------|---|
| Wiethod                        | 11 | n  | +/-       | F | n  | +/-        | F | n  | +/-       | F |
| All results                    | 19 | 17 | Pos       | 2 | 19 | Neg        | 0 | 18 | Pos       | 1 |
| NMKL 156:1997                  | 9  | 8  | Pos       | 1 | 9  | Neg        | 0 | 9  | Pos       | 0 |
| ISO/TS 21872-1:2007            | 7  | 6  | Pos       | 1 | 7  | Neg        | 0 | 7  | Pos       | 0 |
| ISO/TS 21872-1:2007/Cor 1:2008 | 1  | 1  | Pos       | 0 | 1  | Neg        | 0 | 0  | Pos       | 1 |
| ISO 21872-1:2017               | 1  | 1  | Pos       | 0 | 1  | Neg        | 0 | 1  | Pos       | 0 |
| Other*                         | 1  | 1  | Pos       | 0 | 1  | Neg        | 0 | 1  | Pos       | 0 |

 $<sup>\</sup>ensuremath{^*}$  The group Other includes national and/or company-specific methods.

# Yersinia enterocolitica

#### Mixture A

No target organism for the analysis was present in the mixture. All laboratories reported a correct negative result.

#### Mixture B

The strain of *Yersinia enterocolitica* was target organism for the analysis. One laboratory reported a false negative result.

#### **Mixture C**

No target organism for the analysis was present. The mixture did however contain a strain of *Yersinia intermedia*, which is false positive for the analysis. At the National Food Agency, the strain was oxidase-negative and did not display agglutination against neither O:3 nor O:9 antisera. It was however difficult to identify as *Y. intermedia* with API 20E. One laboratory reported a false positive result.

The concentration of *Y. intermedia* in the mixture was low, approximately 5 CFU ml<sup>-1</sup> in the internal tests at the National Food Agency. With the reservation that all laboratories appear to have performed some type of enrichment step, it is unlikely that any of the (correct) negative results are due to *Y. intermedia* not being detected at all.

#### General remarks

Only 14 laboratories performed the analysis, and the results are therefore difficult to evaluate statistically. The low number of false results that were reported could not be attributed to the use of a specific method or medium. All laboratories stated that they performed some type of confirmation.

The majority of the laboratories followed ISO 10273 (different versions) or NMKL 117:1996. Half of the laboratories that used the ISO method followed the new ISO 10273:2017, which contains several important changes compared to the previous version. These include that characteristic *Y. enterocolitica* can be confirmed either by the traditional biochemical methods or by detection of the chromosomal virulence-associated gene *ail* by real-time PCR. Here, it can also be mentioned that NMKL 117:1996 is currently being revised – there is however no estimated date for when a new version will be available.

The method in ISO 10273:2017 is based on parallel enrichment in peptone sorbitol bile salts broth (PSB) and irgasan ticarcillin potassium chlorate broth (ITC). Samples are subsequently streaked onto cefsulodin irgasan novobiocin agar (CIN) as well as (optionally) on a second chromogenic medium selected by the laboratory. Characteristic colonies are confirmed by biochemical methods or by real-time PCR. Cold enrichment can also be performed, but is not mandatory. The method in NMKL 117:1996 differs somewhat and is instead based on pre- and cold enrichment in PSB, as well as selective enrichment in modified Rappaport broth (MRB). After the enrichment steps, samples are inoculated onto CIN, but *Salmonella/Shigella* sodium deoxycholate calcium chloride agar (SSDC) can also be used. Presumptive colonies are subcultured onto bromthymol blue saccharose agar (BS) and sucrose-positive colonies (yellow) are selected for confirmation.

On CIN, colonies of *Y. enterocolitica* have a typical appearance; a red "bull's eye" center and an outer transparent zone. At the National Food Agency, the strain of *Y. enterocolitica* in mixture B formed typical colonies on both CIN and BS. The strain was also oxidase-negative in the confirmation. All laboratories in this proficiency

testing reported incubating on CIN. Chromogenic media that can be used in parallel with CIN are e.g. YECA (2), YeCM (3) and CHROMagar<sup>TM</sup> Yersinia.

Laboratories that use NMKL methods can also choose a method based on real-time PCR, NMKL 163:2013. The sample is here enriched in semi-selective PSB or in non-selective tryptone soya broth with yeast extract (TSBY). The enrichment step is followed by DNA extraction and real-time PCR aimed at the *ail* gene in *Y. enterocolitica*, in a similar way as in ISO 10273:2017. Inoculation from the enrichment broth onto CIN is optional. NMKL 163:2013 is suitable when high contamination levels are suspected, and the use of NMKL 117:1996 or ISO 10273:2003 is recommended for samples with low suspected levels of *Y. enterocolitica*.

Results from qualitative analysis of Yersinia enterocolitica

| Modbod         | NT | N  | Aixture A | A | N  | lixture | В | N  | Aixture ( | С |
|----------------|----|----|-----------|---|----|---------|---|----|-----------|---|
| Method         | N  | n  | +/-       | F | n  | +/-     | F | n  | +/-       | F |
| All results    | 14 | 14 | Neg       | 0 | 13 | Pos     | 1 | 13 | Neg       | 1 |
| ISO 10273:2017 | 4  | 4  | Neg       | 0 | 4  | Pos     | 0 | 4  | Neg       | 0 |
| ISO 10273:2003 | 4  | 4  | Neg       | 0 | 4  | Pos     | 0 | 3  | Neg       | 1 |
| NMKL 117:1996  | 3  | 3  | Neg       | 0 | 3  | Pos     | 0 | 3  | Neg       | 0 |
| Other*         | 3  | 3  | Neg       | 0 | 2  | Pos     | 1 | 3  | Neg       | 0 |

<sup>\*</sup> The group Other includes national and/or company-specific methods.

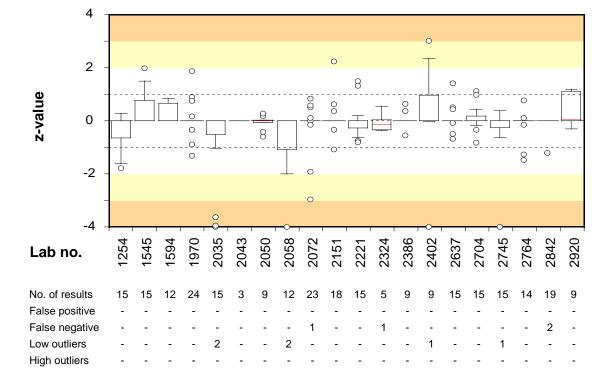
# Outcome of the results of individual laboratory - assessment

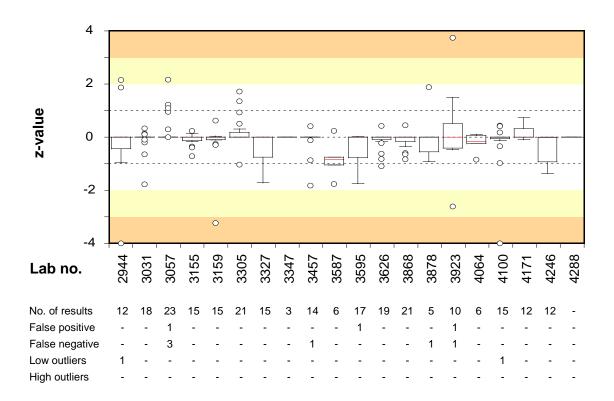
The reported results of all participating laboratories are listed in Annex 1, together with the minimum and maximum accepted values for each analysis. Results that received a remark (false results and outliers) are highlighted in yellow, with bold font.

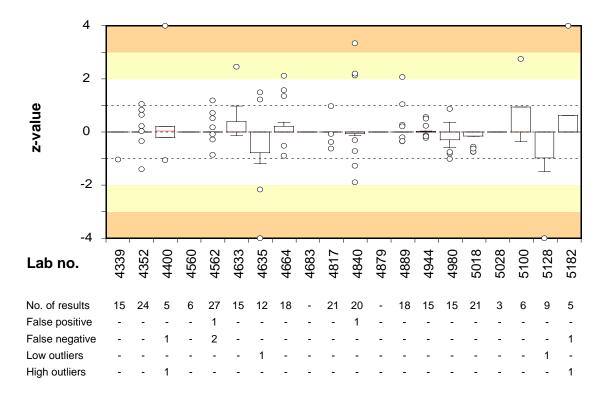
It is the responsibility of the participating laboratories to correctly report results according to the instructions. When laboratories incorrectly report their results, for example by stating "pos" or "neg" for quantitative analyses, the results cannot be correctly processed. Such incorrectly reported results are normally excluded. Inclusion and further processing of such results may still be done, after manual assessment in each individual case.

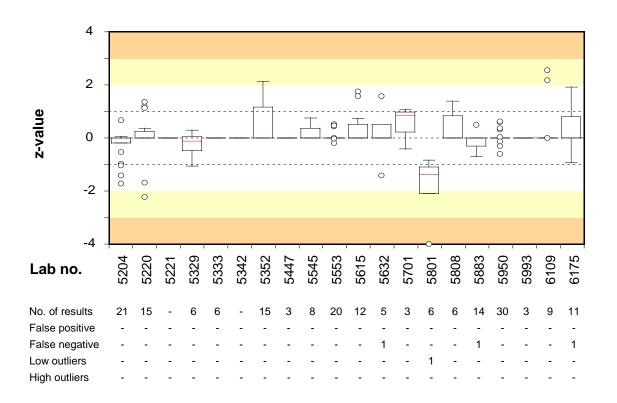
Z-scores (see below) for individual analyses are shown in Annex 2 and can be used as a tool by laboratories when following up on the results.

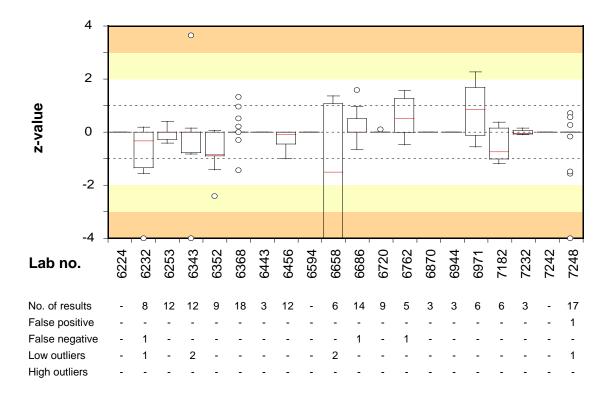
The laboratories are not grouped or ranked based on their results. The performance of a laboratory as a whole can only be evaluated from the number of false results and outliers that are listed in Annex 1 and below the box plots.

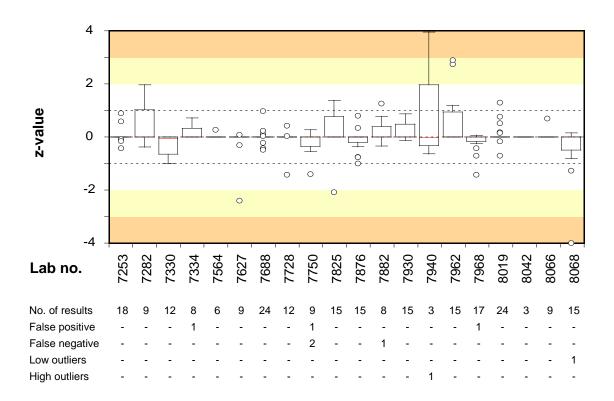

Information on the results processing and recommendations for follow-up work are given in the Scheme Protocol (4). Samples for follow-up can be ordered, free of charge via our website: www.livsmedelsverket.se/en/PT-extra

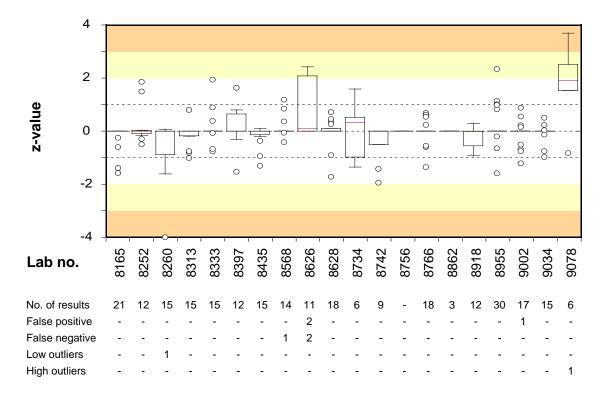

In order to allow comparison of the results from different analyses and mixtures, all results are transformed into standard values (z-scores). For quantitative analyses, a z-score is either positive or negative, depending on whether the individual result is higher or lower than the mean value calculated from all laboratory results for each analysis.

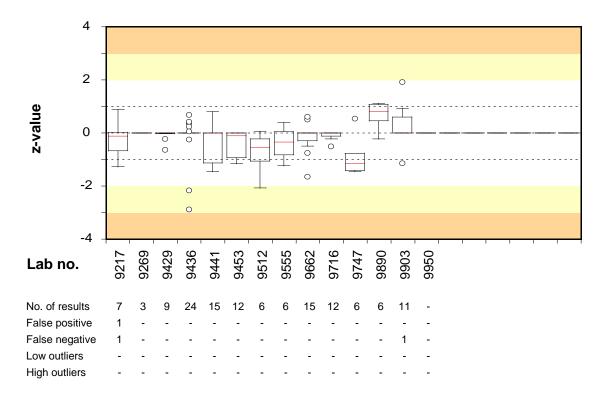

The box plots are based on the z-scores listed in Annex 2, and give a comprehensive view of the achievement of each laboratory. A small box, centred around zero, indicates the results of that individual laboratory, with false results excluded, are close to the general mean values calculated for all laboratory results. The range of z-scores is indicated by the size of the box and, for most laboratories, by lines and/or circles above and beneath the box. For each laboratory, the number of false results and outliers are also listed in the tables below the box plots.


#### Box plots and numbers of deviating results for each laboratory


- Z-scores are calculated according to the formula: z = (x-m)/s, where x is the result of the individual laboratory, m is the mean of the results of all participating laboratories, and s is the standard deviation of the participating laboratories, after removing outliers and false results.
- Outliers are included in the figures after being calculated to z-scores in the same way as for other results.
- False results do not generate any z-scores, and are not included in "No. of results".
- Correct results for qualitative analyses and correct negative results for quantitative analyses without target organism generate a z-score of 0.
- The laboratory median value is illustrated by a horizontal red line in the box.
- The box includes 50 % of a laboratory's results (25 % of the results above the median and 25 % of the results below the median). The remaining 50 % are illustrated by lines and circles outside the box.
- A circle is for technical reasons shown in the plot when a value deviates to certain degree\* from the other values. This does not by itself indicate that the value is an outlier.
- z-scores >+4 and <-4 are positioned at +4 and -4, respectively, in the plot.
- The background is divided by lines and shaded fields to simplify identifying the range in which the results are located.
- < [lowest value in the box  $-1.5 \times$  (highest value in the box lowest value in the box)] or > [highest value in the box +  $1.5 \times$  (highest value in the box lowest value in the box)].














# Test material and quality control

#### **Test material**

Each laboratory received three manufactured freeze-dried microbial mixtures, designated A-C. The test material was freeze-dried in portions of 0.5 ml in vials, as described by Peterz and Steneryd (5). Before analysing the samples, the contents of each vial had to be dissolved in 254 ml of sterile diluent. The organisms present in the mixtures are listed in Table 2.

**Table 2.** *Microorganisms present in mixtures A-C.* 

| NT: 4 1              | D. M                         | Ş                | Strain                 |
|----------------------|------------------------------|------------------|------------------------|
| Mixture <sup>1</sup> | Microorganism —              | $\mathrm{SLV}^2$ | Reference <sup>3</sup> |
| A                    | Campylobacter jejuni         | SLV-540          | chicken, 2003          |
|                      | Proteus mirabilis            | SLV-374          | CCUG 43605             |
|                      | Salmonella Enteritidis       | SLV-436          | -                      |
|                      | Vibrio parahaemolyticus      | SLV-529          | CCUG 38981             |
| В                    | Escherichia coli             | SLV-558          | -                      |
|                      | Kocuria rhizophila           | SLV-055          | ATCC 9341              |
|                      | Salmonella Stockholm         | SLV-390          | chocolate powder       |
|                      | Yersinia enterocolitica      | SLV-408          | CCUG 45643             |
| C                    | Escherichia coli O157        | SLV-528          | CCUG 47557             |
|                      | Hafnia alvei                 | SLV-015          | CCUG 45642             |
|                      | Listeria monocytogenes       | SLV-361          | raw spiced salmon      |
|                      | Staphylococcus saprophyticus | SLV-013          | CCUG 45100             |
|                      | Vibrio cholerae              | SLV-507          | CCUG 34649             |
|                      | Yersinia intermedia          | SLV-472          | CCUG 39927             |

<sup>&</sup>lt;sup>1</sup> The links between the mixtures and the randomised sample numbers are shown in Annex 1.

<sup>&</sup>lt;sup>2</sup> Internal strain identification no. at the National Food Agency.

<sup>&</sup>lt;sup>3</sup> Origin or culture collection (CCUG: Culture Collection University of Gothenburg, Sweden; ATCC: American Type Culture Collection)

#### **Quality control of the mixtures**

It is essential to have aliquots of homogeneous mixture and equal volume in all vials in order to allow comparison of all freeze-dried samples from one mixture. Quality control is performed on 10 randomly chosen vials in conjunction with manufacturing of the mixtures or on 5 vials if an "old" mixture was used and the last quality control was performed more than 6 months ago. Homogeneity of a mixture is approved if, for each analysis, the values obtained for the test of reproducibility (T) and the test "Index of dispersion" between vials  $(I_2)$  do not simultaneously exceed 2.6 and 2.0, respectively. (For definitions of T and  $I_2$ , see references 6 and 7 respectively.)

**Table 3.** Concentration mean (m), T and  $I_2$  values from the quality control of the mixtures; m is expressed in  $log_{10}$  cfu (colony forming units) per ml of sample.

|                                                                  |       | $A^1$ |       |       | $\mathbf{B}^{1}$ |                |       | $\mathbb{C}^2$ |        |
|------------------------------------------------------------------|-------|-------|-------|-------|------------------|----------------|-------|----------------|--------|
| Analysis and method                                              | m     | Т     | $I_2$ | m     | Т                | $\mathbf{I}_2$ | m     | T              | $I_2$  |
| Aerobic microorganisms 30 °C<br>NMKL method no. 86               | 4.316 | 1.39  | 0.573 | 4.546 | 1.36             | 0.931          | 4.910 | 1.44           | 2.733  |
| Enterobacteriaceae NMKL method no. 144                           | 4.308 | 1.14  | 0.839 | 4.207 | 1.61             | 5.164          | 4.542 | 1.43           | 1.088  |
| Thermotolerant <i>Campylobacter</i> , quant. NMKL method no. 119 | 2.595 | 1.29  | 0.613 | -     | -                | -              | -     | -              | -      |
| Thermotolerant <i>Campylobacter</i> , qual. NMKL method no. 119  | Pos.  | -     | -     | Neg.  | -                | -              | Neg.  | -              | -      |
| Listeria monocytogenes, quant. NMKL method no. 136               | -     | -     | -     | -     | -                | -              | 2.461 | 1.53           | 1.313  |
| Listeria monocytogenes, qual. NMKL method no. 136                | Neg.  | -     | -     | Neg.  | -                | -              | Pos.  | -              | -      |
| Salmonella NMKL method no. 71                                    | 2.060 | 1.49  | 0.121 | 0.660 | 1.27             | 0.803          | Neg.  | -              | -      |
| Escherichia coli O157<br>NMKL method no. 164                     | Neg.  | -     | -     | Neg.  | -                | -              | 0.810 | 1.24           | 0.936  |
| Pathogenic <i>Vibrio</i> spp.  NMKL method no. 156               | 2.621 | 1.36  | 0.233 | Neg.  | -                | -              | 3.276 | 1.37           | 11.786 |
| Yersinia enterocolitica NMKL method no. 117                      | Neg.  | -     | -     | 1.513 | 1.18             | 0.553          | 0.707 | 1.29           | 2.021  |

<sup>-</sup> No target organism and therefore no value

 $<sup>^{1}</sup>$  n = 5 vials analysed in duplicate

 $<sup>^{2}</sup>$  n = 10 vials analysed in duplicate

## References

- 1. Kelly, K. 1990. Outlier detection in collaborative studies. J. Assoc. Off. Anal. Chem. 73:58–64.
- 2. Denis, M., Houard, E., Labbé, M., Fondrevez, M. & Salvat., G. 2011. A selective chromogenic plate, YECA, for the detection of pathogenic *Yersinia enterocolitica*: specificity, sensitivity, and capacity to detect pathogenic *Y. enterocolitica* from pig tonsils. J. Pathog. 2011:296275.
- 3. Weagant, S.D. 2008. A new chromogenic agar medium for detection of potentially virulent *Yersinia enterocolitica*. J. Microbiol. Methods. 72:185–190
- 4. Anonymous, 2015. Protocol, Microbiology. Drinking Water & Food, The National Food Agency, Sweden.
- 5. Peterz, M., Steneryd, A.C. 1993. Freeze-dried mixed cultures as reference samples in quantitative and qualitative microbiological examinations of food. J. Appl. Bacteriol. 74:143–148.
- 6. Mooijman, K.M., During, M. & Nagelkerke, N.J.D. 2003. MICROCRM: Preparation and control of batches of microbiological materials consisting of capsules. RIVM report 250935001/2003. RIVM, Bilthoven, Holland.
- 7. Heisterkamp, S.H., Hoekstra, J.A., van Strijp-Lockefeer, N.G.W.M., Havelaar, A.H., Mooijman, K.A., in't Veld, P.H., Notermans, S.H.W., Maier, E.A., Griepink, B. 1993. Statistical analysis of certification trials for microbiological reference materials. Luxembourg: Commission of the European Communities, Report EUR 15008 EN.

Annex 1 Results of the participating laboratories - January 2018

All results are in log<sub>10</sub> cfu per ml sample. Results reported as "< value" have been regarded as zero. Results reported as "> value" are exluded from the calculations. A dash indicates the analysis was not performed. Outliers and false results are highlighted and summarized for each analysis at the end of the table

| Lab no.      | Vial        |              | obic micr<br>nisms 30 |              | Enter               | obacteri     | aceae        |             | rmotole<br>npylobac |         | Listeria | топосу   | /togenes   |            | ermotole<br>mpylobac |            | тог        | Listeria<br>locytoge | nes        | s          | Salmonell  | a          |          | richia coi<br>(VT-neg) |          |            | Pathogeni<br>Vibrio sp |            | Yersini  | a entero | colitica | Lab<br>no.   |
|--------------|-------------|--------------|-----------------------|--------------|---------------------|--------------|--------------|-------------|---------------------|---------|----------|----------|------------|------------|----------------------|------------|------------|----------------------|------------|------------|------------|------------|----------|------------------------|----------|------------|------------------------|------------|----------|----------|----------|--------------|
|              | АВС         | Α            | В                     | С            | Α                   | В            | С            | Α           | В                   | С       | Α        | В        | С          | Α          | В                    | С          | Α          | В                    | С          | Α          | В          | С          | Α        | В                      | С        | Α          | В                      | С          | Α        | В        | С        |              |
| 1254         | 1 3 2       | 4.18         | 4.41                  | 4.57         | 3.91                | 4.04         | 3.93         | -           | -                   | -       | <1       | <1       | 2.45       | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        | -        | 1254         |
| 1545         | 3 2 1 3 1 2 | 4.28<br>4.23 | 4.76                  | 5.04         | 4.19                | 4.54         | 4.69<br>4.53 | -           | -                   | -       | <0       | <0       | 2.48       | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -<br>Noa | -<br>Noa               | -<br>Doo | -          | -                      | -          | -        | -        | -        | 1545<br>1594 |
| 1594<br>1970 | 3 1 2       | 4.23         | 4.6<br>4.45           | 4.94<br>4.95 | 4.2<br>3.79         | 4.34<br>4.52 | 4.53         | 1.97        | -<br><1             | -<br><1 | -<br><1  | -<br><1  | 2.38       | Pos        | Neg                  | Noa        | Noa        | Noa                  | Pos        | Pos<br>Pos | Pos<br>Pos | Neg        | Neg      | Neg                    | Pos      | Pos        | Neg                    | Pos        | -        | -        | -        | 1970         |
| 2035         | 3 1 2       | 4.11         | 4.43                  | 4.95         | 2                   | 3.5          | 3.5          | 1.97        | -                   | -       | <1       | <1       | 2.36       | -          | neg                  | Neg<br>-   | Neg<br>Neg | Neg<br>Neg           | Pos        | -          | -          | Neg<br>-   | _        |                        | -        | Pos        | Neg                    | Pos        | Neg      | Pos      | Neg      | 2035         |
| 2043         | 3 2 1       | _            | _                     | _            | -                   | -            | -            | _           | _                   | _       | -        | -        | -          | _          | _                    | _          | -          | -                    | -          | Pos        | Pos        | Neg        | _        | _                      | _        | -          | -                      | -          | -        | -        | -        | 2043         |
| 2050         | 3 2 1       | 4.15         | 4.43                  | 4.84         | 4.09                | 4.24         | 4.33         | -           | -                   | -       | -        | -        | -          | -          | -                    | -          | -          | -                    | -          | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        | -        | 2050         |
| 2058         | 1 2 3       | 3.1          | 4.06                  | 3.78         | -                   | -            | -            | -           | -                   | -       | <1       | <1       | 2.4        | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        | -        | 2058         |
| 2072         | 2 1 3       | 4.23         | 4.65                  | 4.79         | 4.11                | 4.34         | 4.48         | 0.95        | <1                  | <1      | <1       | <1       | 2.08       | Pos        | Neg                  | Neg        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | Neg        | Neg                    | Pos        | -        | -        | - '      | 2072         |
| 2151         | 1 3 2       | 4.53         | 4.45                  | 4.65         |                     |              |              | 2.2         | 0                   | 0       | 0        | 0        | 2.46       | Pos        | Neg                  | Neg        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        | -        | 2151         |
| 2221         | 2 3 1       | 4.43         | 4.4                   | 4.7          | 4.38                | 4.05         | 4.2          | -           | -                   | -       | <2       | <2       | 2.44       | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        | - '      | 2221         |
| 2324<br>2386 | 132         | 4.18<br>4.28 | 4.45<br>4.4           | 4.82<br>4.91 | <1                  | 4.17         | 4.47         | -           | -                   | -       | -        | -        | -          | -          | -                    | -          | No.        | -<br>Noa             | -<br>Doo   | Pos        | -<br>Doo   | -<br>Noa   | -        | -                      | -        | -          | -                      | -          | -        | -        | -        | 2324<br>2386 |
| 2402         | 1 2 3       | 4.26         | 5.08                  | 4.96         | 1.9                 | -<br>4.72    | 4.34         | _           |                     |         | _        | -        |            | 1 -        | -                    |            | Neg        | Neg                  | Pos        | Pos        | Pos<br>Pos | Neg<br>Neg | ]        |                        |          | _          |                        |            | 1 -      |          | - '      | 2402         |
| 2637         | 3 1 2       | 4.22         | 4.53                  | 4.71         | 4.2                 | 4.72         | 4.23         | _           | _                   | _       | <1       | <1       | 2.58       | _          | _                    | _          | Neg        | Neg                  | Pos        | Pos        | Pos        | Nea        | _        | _                      | _        | _          | _                      | _          | _        | -        | _        | 2637         |
| 2704         | 2 3 1       | 4.38         | 4.45                  | 4.88         | 3.9                 | 4.16         | 4.57         | -           | -                   | -       | <1       | <1       | 2.46       | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        | - '      | 2704         |
| 2745         | 1 2 3       | 4.15         | 4.41                  | 4.72         | 4.17                | 4.19         | 4.41         | -           | -                   | -       | 0        | 0        | 1.34       | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        | - '      | 2745         |
| 2764         | 3 1 2       | -            | 4.71                  | 4.79         | 4.11                | 3.97         | 4            |             | -                   | -       | -        | -        | -          | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | Neg      | Neg                    | Pos      | -          | -                      | -          | -        | -        | - '      | 2764         |
| 2842         | 3 1 2       | -            | -                     | -            | -                   | -            | -            | <1          | <1                  | <1      | <1       | <1       | 2.28       | Pos        | Neg                  | Neg        | Neg        | Neg                  | Pos        |            |            |            | Neg      | Neg                    | Pos      | Pos        | Neg                    | Pos        | Neg      | Neg      | Neg      | 2842         |
| 2920         | 2 1 3       | 4.19         | 4.68                  | 4.98         | 4.1                 | 4.4          | 4.61         | -           | -                   | -       | -        | -        | -          | -          | -                    | -          | l          | -                    | -          | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        | - '      | 2920         |
| 2944<br>3031 | 2 3 1 2 3 1 | 4.14         | 4.97                  | 5.14         | <b>3.15</b><br>4.11 | 4.16<br>4.08 | 4.12<br>4.32 | -           | -                   | -       | - 1      | - 1      | - 2.42     | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | -<br>Doo   | -<br>Noa               | -<br>Doo   | -        | -        | -        | 2944<br>3031 |
| 3057         | 3 1 2       | 4.2<br>4.23  | 4.11<br>4.6           | 4.86<br>5    | 4.11                | 4.08         | 4.32<br>4.6  | -           | -                   | -       | <1<br><1 | <1<br><1 | 2.43<br><1 | Pos        | Neg                  | -<br>Neg   | Neg<br>Neg | Neg<br>Neg           | Pos<br>Neg | Pos<br>Pos | Pos<br>Pos | Neg<br>Pos | Neg      | Neg                    | Pos      | Pos<br>Pos | Neg<br>Neg             | Pos<br>Neg | Neg      | Pos      | -<br>Neg | 3057         |
| 3155         | 1 2 3       | 4.25         | 4.49                  | 4.76         | 4.06                | 4.13         | 4.18         | _           |                     | -       | 0        | 0        | 2.45       | -          | neg                  | iveg       | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | iveg     | iveg                   | -        |            | iveg                   | Neg        | iveg     | -        | iveg     | 3155         |
| 3159         | 3 2 1       | 4.22         | 4.47                  | 4.77         | 3.36                | 4.2          | 4.32         | -           | _                   | -       | <1       | <1       | 2.49       | -          | _                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | _        | _                      | -        | -          | _                      | -          | l -      | -        | - '      | 3159         |
| 3305         | 3 2 1       | 4.46         | 4.57                  | 4.86         | 4.2                 | 4.43         | 4.56         | -           | -                   | -       | 0        | 0        | 2.3        | Pos        | Neg                  | Neg        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | Neg      | Neg                    | Pos      | -          | -                      | -          | -        | -        | -        | 3305         |
| 3327         | 2 1 3       | 4            | 4.36                  | 4.63         | 3.91                | 3.9          | 4.28         | -           | -                   | -       | 0        | 0        | 2.37       | -          | - "                  | - "        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | - "      | - "                    | -        | -          | -                      | -          | -        | -        | - '      | 3327         |
| 3347         | 3 2 1       | -            | -                     | -            | -                   | -            | -            | -           | -                   | -       | -        | -        | -          | -          | -                    | -          | -          | -                    | -          | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        | -        | 3347         |
| 3457         | 1 2 3       | -            | -                     | -            | 4.06                | 4.04         | 4.44         | -           | -                   | -       | 0        | 0        | 2.21       | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | Neg        | Neg                    | Pos        | -        | -        | -        | 3457         |
| 3587         | 2 3 1       | 4.09         | 4.35                  | 4.7          | 3.69                | 4.03         | 4.4          | -           |                     |         |          | -        | -          | -          | -                    | -          |            | -                    | -          | -          | -          | -          | -        | -                      | -        | -          | -                      | -          | -        | -        | - '      | 3587         |
| 3595<br>3626 | 2 1 3       | 4.19         | 4.35                  | 4.65         | 3.95                | 4.04<br>4    | 4.35         | 1.28<br>2.1 | <1                  | <1      | <1       | <1       | 2.22       | -<br>Doo   | -<br>Noa             | -<br>Noa   | Neg        | Neg                  | Pos        | Pos        | Pos        | Pos        | -        | -                      | -        | -          | -                      | -          | -        | -        | -        | 3595<br>3626 |
| 3868         | 213         | 4.2<br>4.15  | 4.39                  | 4.76         | 3.9<br>4.08         | 4.08         | 4.2<br>4.15  | 2.11        | <1<br>0             | <1<br>0 | <1<br>0  | <1<br>0  | 2.4<br>2.4 | Pos<br>Pos | Neg<br>Neg           | Neg<br>Neg | Neg<br>Neg | Neg<br>Neg           | Pos<br>Pos | Pos<br>Pos | Pos<br>Pos | Neg<br>Neg | _        |                        | -        | _          | -                      | -          | 1 -      | -        |          | 3868         |
| 3878         | 2 1 3       | 4.16         | 4.97                  | 4.68         | -                   | -            |              | -           | -                   | -       | -        | -        |            | -          | -                    | -          | -          | -                    | -          | Pos        | Neg        | Neg        | _        | _                      | -        | -          | _                      | -          | l -      | -        | - '      | 3878         |
| 3923         | 3 1 2       | 4.43         | 5.41                  | 4.89         | 3.5                 | 4.11         | 4.25         | -           | -                   | -       | -        | -        | -          | -          | -                    | -          | -          | -                    | -          | Pos        | Neg        | Pos        | -        | -                      | -        | Pos        | Neg                    | Pos        | -        | -        | - '      | 3923         |
| 4064         | 2 3 1       | 4.2          | 4.33                  | 4.8          | 4.1                 | 4.15         | 4.37         | -           | -                   | -       | -        | -        | -          | -          | -                    | -          | -          | -                    | -          | -          | -          | -          | -        | -                      | -        | -          | -                      | -          | -        | -        | - '      | 4064         |
| 4100         | 2 3 1       | 4.1          | 4.5                   | 4.84         | 2                   | 4.27         | 4.44         | -           | -                   | -       | <1       | <1       | 2.38       | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        | - '      | 4100         |
| 4171         | 2 1 3       | 4.3          | 4.56                  | 4.8          | 4.11                | 4.32         | 4.49         | -           | -                   | -       | -        | -        | -          | -          | -                    | -          |            |                      |            | Pos        | Pos        | Neg        | Neg      | Neg                    | Pos      | -          | -                      | -          | -        | -        | -        | 4171         |
| 4246         | 3 1 2       | 4.21         | 4.21                  | 4.63         | 4.08                | 4.05         | 4.1          | -           | -                   | -       | -        | -        | -          | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        | - '      | 4246         |
| 4288<br>4339 | 132         |              | -                     | -            | -                   | -            | -            | -           | -                   | -       | -<br><1  | -<br><1  | 2.3        | -          | -                    | -          | -<br>Neg   | -<br>Neg             | -<br>Pos   | -<br>Pos   | -<br>Pos   | -<br>Neg   | -<br>Neg | -<br>Neg               | -<br>Pos | _          | -                      | -          | -<br>Neg | -<br>Pos | -<br>Neg | 4288<br>4339 |
| 4352         | 1 3 2       | 4.26         | 4.2                   | 4.94         | 4.23                | 4.2          | 4.59         | _           | -                   | -       | <1       | <1       | 2.38       | Pos        | Neg                  | Neg        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | Neg      | Neg                    | Pos      | Pos        | Neg                    | Pos        | -        | -        | -        | 4352         |
| 4400         | 2 1 3       | 4.78         | 4.48                  | 4.82         | 0                   | 4.23         | 4.1          | _           | _                   | _       |          | -        | -          |            |                      |            | - 10g      |                      | -          |            | -          |            |          |                        | -        | -          |                        | -          | -        | _        | '        | 4400         |
| 4560         | 1 3 2       | -            | -                     | -            | -                   | -            |              | -           | -                   | -       | -        | -        | -          | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        | - '      | 4560         |
| 4562         | 1 2 3       | 4.3          | 4.51                  | 4.84         | <2                  | 4.4          | 4.28         | 1.47        | <1                  | <1      | <1       | <1       | 2.5        | Pos        | Neg                  | Neg        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | Neg      | Neg                    | Neg      | Pos        | Neg                    | Pos        | Neg      | Pos      | Pos      | 4562         |
| 4633         | 1 3 2       | 4.23         | 4.76                  | 4.89         | 4.15                | 4.17         | 4.52         | -           | -                   | -       | <1       | <1       | 2.7        | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | - '      | -        | 4633         |
| 4635         | 3 1 2       | 3.94         | 4.88                  | 5            | 1.78                | 4.13         | 4.07         | -           | -                   | -       | -        | -        | -          | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        |            |                        |            | -        | -        | - '      | 4635         |
| 4664         | 3 1 2       | 4.11         | 4.58                  | 4.87         | 4.56                | 4.43         | 4.71         | -           | -                   | -       | 0        | 0        | 2.36       | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | Pos        | Neg                    | Pos        | -        | -        | -        | 4664         |
| 4683<br>4817 | 2 3 1 3 1 2 | -<br>4.18    | -<br>4.76             | -<br>4.72    | _                   | -            | -            | -           | -                   | -       | -<br><1  | -<br><1  | -<br>2.41  | ] -        | -                    | -          | Noc.       | -<br>Nec             | -<br>Pos   | -<br>Pos   | -<br>Pos   | -<br>Noa   | Neg      | -<br>Noc               | -<br>Pos | Pos        | -<br>Neg               | Pos        | -<br>Neg | -<br>Pos | -<br>Neg | 4683<br>4817 |
| 4840         | 132         | 4.16         | 4.76                  | 5.32         | 3.66                | -<br>4.14    | 4.84         | 1.54        | -<br><1             | -<br><1 | <1<br><1 | <1       | 2.41       | Pos        | Neg                  | Neg        | Neg<br>Neg | Neg<br>Neg           | Pos        | Pos        | Pos        | Neg<br>Pos | Neg<br>- | Neg<br>-               | -        | -          | iveg                   | -          | - iveg   | -        | - veg    | 4840         |
| 4879         | 1 3 2       | -            | -                     | J.JZ<br>-    | -                   |              | -            | -           | -                   | -       | -        | -        | 2.07       | -          | -                    | -          | -          | -                    | -          | -          | -          | -          | -        | -                      | -        | _          | -                      | -          | _        | -        | - 1      | 4879         |
| 4889         | 1 3 2       | 4.2          | 4.45                  | 4.97         | 4.15                | 4.23         | 4.83         | -           | -                   | -       | 0        | 0        | 2.38       | l -        | _                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | Pos        | Neg                    | Pos        | -        | -        | - '      | 4889         |
| 4944         | 3 1 2       | 4.2          | 4.5                   | 4.9          | 4.2                 | 4.2          | 4.4          | -           | -                   | -       | <0       | <0       | 2.4        | -          | -                    | -          | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        | - '      | 4944         |
| 4980         | 2 3 1       | 4.28         | 4.34                  | 4.7          | 4.28                | 4.09         | 4.11         | -           | -                   | -       | <1       | <1       | 2.44       |            | -                    |            | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -        | -                      | -        | -          | -                      | -          | -        | -        |          | 4980         |
| m            |             | 4.230        | 4.529                 | 4.814        | 4.085               | 4.193        | 4.345        | 1.890       | 0                   | 0       | 0        | 0        | 2.418      | pos        | neg                  | neg        | neg        | neg                  | pos        | pos        | pos        | neg        | neg      | neg                    | pos      | pos        | neg                    | pos        | neg      | pos      | neg      | m            |
| S            |             | 0.134        | 0.235                 | 0.152        | 0.224               | 0.175        | 0.232        | 0.492       | 0                   | 0       | 0        | 0        | 0.114      | -          | -                    | -          | -          | -                    | -          | -          | -          | -          | -        | -                      | -        | -          | -                      | -          | -        | -        | -        | S            |

| Lab no.      | Vial        |               | obic micr<br>nisms 30 |               | Enter        | obacteria        | aceae         |       | rmotole<br>npyloba |         | Listeria | топосу   | ytogenes     |          | ermotole<br>mpylobac |          | тог        | Listeria<br>nocytoge | nes        | s          | almoneli   | a          | Esche      | richia coi<br>(VT-neg) | i O157   |     | Pathogen<br>Vibrio sp |     | Yersinia | a entero | colitica | Lab<br>no.   |
|--------------|-------------|---------------|-----------------------|---------------|--------------|------------------|---------------|-------|--------------------|---------|----------|----------|--------------|----------|----------------------|----------|------------|----------------------|------------|------------|------------|------------|------------|------------------------|----------|-----|-----------------------|-----|----------|----------|----------|--------------|
|              | ABC         | Α             | В                     | С             | Α            | В                | С             | Α     | В                  | С       | Α        | В        | С            | Α        | В                    | С        | Α          | В                    | С          | Α          | В          | С          | Α          | В                      | С        | Α   | В                     | С   | Α        | В        | С        |              |
| 5018         | 2 3 1       | 4.13          | 4.4                   | 4.79          | 3.92         | 4.18             | 4.2           | -     | -                  | -       | <1       | <1       | 2.4          | Pos      | Neg                  | Neg      | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -          | -                      | -        | -   | -                     | -   | Neg      | Pos      | Neg      | 5018         |
| 5028<br>5100 | 2 3 1 3 2 1 | 4.6           | -<br>4.75             | -<br>4.76     | _            | -                | -             | -     | -                  | -       | _        | -        | -            | _        | -                    | -        |            | -                    | -          | Pos        | Pos        | Neg        | -          | -                      | -        | _   | -                     | -   | Neg      | Pos      | Neg      | 5028<br>5100 |
| 5128         | 2 3 1       | 3.36          | 4.3                   | 4.59          | _            | _                | -             | _     | -                  | -       | _        | _        | _            | _        | _                    | -        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | _          | _                      | _        | _   | -                     | _   | _        | _        | _        | 5128         |
| 5182         | 1 2 3       | -             | -                     | -             | <2           | 5.02             | 4.49          | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | -          | -                    | -          | Pos        | Pos        | Neg        | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 5182         |
|              | 3 1 2       | 4             | 4.3                   | 4.6           | 4.1          | 4.1              | 4.5           | 1.8   | <1                 | <1      | <1       | <1       | 2.3          | Pos      | Neg                  | Neg      | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 5204         |
| 5220<br>5221 | 2 3 1 2 3 1 | 4.39          | 4.56                  | 4.56          | 4.39         | 4.39             | 3.83          | -     | -                  | -       | 0        | 0        | 2.46         | _        | -                    | -        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | _          |                        | -        | _   | -                     | -   | -        | -        | -        | 5220<br>5221 |
| 5329         | 2 3 1       | 4.23          | 4.54                  | 4.78          | 4.15         | -<br>4.11        | 4.1           | _     |                    | -       | _        | -        | -            | _        | -                    | -        | _          | -                    | -          | -          | -          | -          | _          |                        | -        | _   | -                     | -   | _        | -        | -        | 5329         |
| 5333         | 1 2 3       | -             | -                     | -             | -            | -                | -             | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 5333         |
|              | 2 1 3       | -             | -                     | -             | -            | -                | -             | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | -          | -                    | -          | -          | -          | -          | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 5342         |
| 5352         | 1 2 3       | 4.39          | 4.91                  | 5.03          | 4.34         | 4.36             | 4.84          | -     | -                  | -       | <1       | <1       | 2.49         | -        | -<br>N               | -<br>N   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 5352         |
| 5447<br>5545 | 2 3 1 2 3 1 | -             | -                     | -             | -<br>>1      | 4.32             | -<br>4.52     | _     | -                  |         | _        | -        |              | Pos      | Neg                  | Neg      | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -          |                        | -        | _   | -                     |     | 1 -      | -        | -        | 5447<br>5545 |
|              | 3 1 2       | 4.3           | 4.53                  | 4.88          | 4.19         | 4.16             | 4.34          | -     | <1                 | <1      | -        | -        | -            | Pos      | Neg                  | Neg      | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | Neg        | Neg                    | Pos      | -   | -                     | -   | -        | -        | -        | 5553         |
| 5615         | 2 3 1       | 4.23          | 4.54                  | 5.08          | 4.15         | 4.32             | 4.71          | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 5615         |
| 5632         | 3 1 2       | 4.3           | 4.9                   | 4.6           | -            | -                | -             | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | -          | -                    | -          | Neg        | Pos        | Neg        | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 5632         |
| 5701<br>5801 | 1 3 2 2 3 1 | 4.18<br>3.95  | 4.73<br>4.2           | 4.98<br>4.61  | 2.9          | -<br>4           | -<br>4.15     |       | -                  | -       | -        | -        | -            | -        | -                    | -        | _          | -                    | -          | -          | -          | -          | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 5701<br>5801 |
| 5808         | 3 2 1       | 4.23          | 4.86                  | 4.94          | -            | -                | -             | -     | -                  | -       | _        | -        | -            | -        | -                    |          | -          | -                    | -          | Pos        | Pos        | Neg        | _          | -                      | -        | _   | -                     | -   | -        | -        | -        | 5808         |
| 5883         | 3 1 2       | 4.19          | 4.39                  | 4.79          | <2           | 4.13             | 4.46          | -     | -                  | -       | 0        | 0        | 2.34         | -        | -                    | -        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 5883         |
| 5950         | 2 3 1       | 4.19          | 4.39                  | 4.82          | 4.22         | 4.17             | 4.42          | 2.2   | <1                 | <1      | <1       | <1       | 2.46         | Pos      | Neg                  | Neg      | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | Neg        | Neg                    | Pos      | Pos | Neg                   | Pos | Neg      | Pos      | Neg      | 5950         |
| 5993<br>6109 | 1 2 3       | 4.23          | -<br>5.04             | -<br>5.2      | -            | -                | -             | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | -          | -                    | -          | Pos<br>Pos | Pos<br>Pos | Neg        | -<br>Noa   | -<br>Noa               | -<br>Pos | -   | -                     | -   | -        | -        | -        | 5993<br>6109 |
|              | 3 1 2       | 4.23          | 4.98                  | 4.95          | 3.88         | 4.5              | 4.51          | _     |                    | -       | _        |          | -            | _        | -                    | -        | Neg        | Neg                  | Neg        | Pos        | Pos        | Neg<br>Neg | Neg<br>-   | Neg<br>-               | -        | _   | -                     | -   | _        | -        | -        | 6175         |
| 6224         | 1 2 3       | -             | -                     | -             | -            | -                | -             | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | -          | -                    | -          | -          | -          | -          | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 6224         |
| 6232         | 1 3 2       | 4.26          | 4.4                   | 4.58          | 2.65         | 4                | 4.32          | -     | -                  | -       | -        | -        | -            | -        | -                    | -        |            |                      | -          | Pos        | Neg        | Neg        | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 6232         |
| 6253         | 1 2 3       | 4.18          | 4.59                  | 4.76          | 4.18         | 4.15             | 4.28          | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 6253         |
|              | 3 1 2 1 2 3 | 4.72<br>4.11  | <b>2.46</b><br>4.33   | 4.69<br>4.6   | 3.92<br>4.1  | <b>2.19</b> 3.77 | 4.38<br>4.15  | -     | -                  | -       | -        | -        | -            | _        | -                    | -        | Neg        | Neg                  | Pos        | Pos<br>Pos | Pos<br>Pos | Neg<br>Neg | -          |                        | -        | _   | -                     | -   | -        | -        | -        | 6343<br>6352 |
| 6368         | 1 3 2       | 4.23          | 4.46                  | 4.89          | 4.3          | 4.23             | 4.65          | -     | -                  | -       | <1       | <1       | 2.26         | -        | _                    | -        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -          | -                      | -        | Pos | Neg                   | Pos | -        | -        | -        | 6368         |
| 6443         | 1 3 2       | -             | -                     | -             | -            | -                | -             | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | -          | -                    | -          | Pos        | Pos        | Neg        | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 6443         |
| 6456         | 1 3 2       | 4.21          | 4.43                  | 4.78          | 3.86         | 4.11             | 4.19          | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 6456         |
| 6594<br>6658 | 2 1 3 2 3 1 | 4.04          | 4.85                  | 3.6           | 3.73         | 4.38             | 2.47          | -     | -                  |         | _        | -        |              | ]        | -                    | -        | _          |                      | -          | -          | -          | -          | _          |                        | -        | _   | -                     |     | 1 -      | -        | -        | 6594<br>6658 |
| 6686         | 2 3 1       | 4.36          | 4.56                  | 4.92          | 4.2          | 4.08             | 4.36          | -     | -                  | -       | <1       | <1       | 2.6          | -        | -                    | -        | Neg        | Neg                  | Pos        | Neg        | Pos        | Neg        | -          | -                      | -        | _   | -                     | -   | -        | -        | -        | 6686         |
| 6720         | 2 3 1       | -             | -                     | -             | -            | -                | -             | -     | -                  | -       | <1       | <1       | 2.43         | -        | -                    | -        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -          | -                      | -        | -   | -                     | -   |          | -        | -        | 6720         |
| 6762         | 1 3 2       | 4.44          | 4.42                  | 4.89          | 4.37         | 4.19             | <1            | -     | -                  | -       | -        | -        | -            | -        | -                    | -        |            | -                    | -          | -          | -          | -          | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 6762         |
| 6870<br>6944 | 3 2 1 2 1 3 | -             | -                     | -             | _            | -                | -             | -     | -                  | -       | _        | -        |              |          | -                    | -        | Neg<br>Neg | Neg<br>Neg           | Pos<br>Pos | -          | -          | -          | _          |                        | -        | _   | -                     | -   | -        | -        | -        | 6870<br>6944 |
| 6971         | 3 2 1       | 4.35          | 4.4                   | 5.07          | 4.06         | 4.59             | 4.53          | _     | -                  | -       | _        | _        | _            | _        | _                    | _        | -          | -                    | -          | -          | _          | _          | _          | _                      | _        | _   | -                     | _   | -        | _        | _        | 6971         |
| 7182         | 2 3 1       | 4.25          | 4.25                  | 4.66          | 4.17         | 4.02             | 4.23          | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | -          | -                    | -          | -          | -          | -          | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 7182         |
| 7232         | 3 2 1       | 4.25          | 4.52                  | 4.8           | -            | -                | -             | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | -          | -                    | -          | -          | -          | -          | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 7232         |
| 7242<br>7248 | 2 1 3 1 3 2 | 4.02          | -<br>4.7              | -<br>4.9      | 2.78         | -<br>4.24        | 4             | -     | -                  | -       | -<br><1  | -<br><1  | 2.4          | -<br>Pos | Pos                  | -<br>Neg | -<br>Neg   | -<br>Neg             | -<br>Pos   | -<br>Pos   | -<br>Pos   | -<br>Neg   | [          | -                      | -        | 1 : | -                     | -   | 1 -      | -        | -        | 7242<br>7248 |
| 7253         | 1 2 3       | 4.02          | 4.51                  | 4.79          | -            | -                | -             | 2.18  | -<br><1            | -<br><1 | <1       | <1       | 2.37         | Pos      | Neg                  | Neg      | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | _          | -                      | -        | -   | -                     | -   | -        | -        | -        | 7253         |
| 7282         | 3 1 2       | 4.18          | 4.99                  | 4.97          | 4.01         | 4.3              | 4.67          | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | Neg        | Neg                  | Pos        | -          | -          | -          | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 7282         |
| 7330         | 1 2 3       | 4.1           | 4.4                   | 4.7           | 3.86         | 4.1              | 4.32          | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | <u>,</u> - | -                      | -        | -   | -                     | -   | -        | -        | -        | 7330         |
| 7334<br>7564 | 2 3 1       | 4.27          | 4.62                  | 4.92          | -            | -                | -             | -     | -                  | -       | -0       | -<br><0  | -<br>2.45    | -        | -                    | -        | -<br>Noa   | -<br>Noa             | -<br>Doc   | Pos        | Pos        | Neg        | Neg        | Pos                    | Pos      | -   | -                     | -   | -        | -        | -        | 7334<br>7564 |
| 7627         | 1 2 3       | -<br>4.19     | -<br>4.55             | -<br>4.45     | _            | -                | -             | -     | -                  | -       | <0<br>-  | -        | 2.43<br>-    | -        | -                    | -        | Neg<br>-   | Neg<br>-             | Pos<br>-   | Pos        | Pos        | Neg        | Neg        | Neg                    | Pos      | -   | -                     | -   | _        |          | -        | 7627         |
| 7688         | 2 1 3       | 4.2           | 4.43                  | 4.74          | 4.11         | 4.2              | 4.4           | -     | -                  | -       | <1       | <1       | 2.53         | Pos      | Neg                  | Neg      | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | Neg        | Neg                    | Pos      | -   | -                     | -   | Neg      | Pos      | Neg      | 7688         |
|              | 2 3 1       | 4.04          | 4.63                  | 4.82          | -            | -                | -             | -     | -                  | -       | -        | -        | -            | Pos      | Neg                  | Neg      | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        |            | -                      | -        | -   | -                     | -   | -        | -        | -        | 7728         |
| 7750<br>7825 | 2 3 1 1 2 3 | 4.23<br>4.33  | 4.2                   | 4.76          | 4.13<br>4.35 | 4.24             | 4.22          | -     | -                  | -       | _1       | -<br>_1  | 2.58         | -        | -                    | -        | -<br>Noa   | -<br>Noa             | -<br>Doc   | Pos        | Neg        | Neg        | Neg        | Pos                    | Neg      | -   | -                     | -   | -        | -        | -        | 7750<br>7825 |
| 7825<br>7876 | 1 2 3       | 4.33<br>4.13  | 4.82<br>4.61          | 4.93<br>4.81  | 3.86         | 3.83<br>4.06     | 4.38<br>4.26  | -     | -                  | -       | <1<br><1 | <1<br><1 | 2.58         | _        | -                    | -        | Neg<br>Neg | Neg<br>Neg           | Pos<br>Pos | Pos<br>Pos | Pos<br>Pos | Neg<br>Neg | -          | -                      | -        | _   | -                     | -   |          | -        | -        | 7876         |
| 7882         | 2 3 1       | 4.4           | 4.45                  | 4.93          | -            | -                | -             | -     | -                  | -       | -        | -        | -            | -        | -                    | -        | Neg        | Neg                  | Pos        | Pos        | Neg        | Neg        | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 7882         |
| 7930         | 3 2 1       | 4.32          | 4.5                   | 4.88          | 4.28         | 4.3              | 4.32          | -     | -                  | -       | <1       | <1       | 2.48         | -        | -                    | -        | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 7930         |
| 7940         | 3 1 2 2 1 3 | 4.76          | 4.38                  | 4.81          | -<br>17      | -<br>17          | 4.60          | -     | -                  | -       | - 0      | - 0      | -<br>2.5     | -        | -                    | -        | -<br>No-   | -<br>Nc~             | -<br>Doo   | -<br>Don   | -<br>Doo   | -<br>No    | -          | -                      | -        | -   | -                     | -   | -        | -        | -        | 7940<br>7962 |
| 7962<br>m    | ∠ 1 3       | 4.24<br>4.230 | 4.61<br>4.529         | 4.99<br>4.814 | 4.7<br>4.085 | 4.7<br>4.193     | 4.62<br>4.345 | 1.890 | 0                  | 0       | 0        | 0        | 2.5<br>2.418 | pos      | neg                  | neg      | Neg<br>neg | Neg<br>neg           | Pos<br>pos | Pos        | Pos<br>pos | Neg<br>neg | neg        | neg                    | pos      | pos | neg                   | pos | neg      | pos      | neg      | 7962<br>m    |
| S            |             | 0.134         |                       | 0.152         |              | 0.175            |               | 0.492 | 0                  | 0       | 0        | 0        | 0.114        | -        | -<br>-               | -<br>-   | -          | -<br>-               | -          | -          |            |            | -          |                        | -        | -   | -<br>-                |     | -        |          |          | S            |

| Lab no       | . Vial |                | Aerobic mic<br>rganisms 3 |                | Enter          | obacteri           | aceae          |                | rmotoler<br>npylobac |    | Listeria | monoc   | ytogenes   |     | ermotole<br>npylobac |     |            | Listeria<br>locytoge | nes        | s          | almonel    | la         |     | richia co<br>(VT-neg) |        |     | Pathogeni<br>/ibrio sp |     | Yersinia | a entero | colitica | Lab<br>no.   |
|--------------|--------|----------------|---------------------------|----------------|----------------|--------------------|----------------|----------------|----------------------|----|----------|---------|------------|-----|----------------------|-----|------------|----------------------|------------|------------|------------|------------|-----|-----------------------|--------|-----|------------------------|-----|----------|----------|----------|--------------|
|              | ΑВ     | C A            | В                         | С              | Α              | В                  | С              | Α              | В                    | С  | Α        | В       | С          | Α   | В                    | С   | Α          | В                    | С          | Α          | В          | С          | Α   | В                     | С      | Α   | В                      | С   | Α        | В        | С        |              |
| 7968         | 2 1    | 3 4.0          | 4.52                      | 4.75           | 4.03           | 4.07               | 4.36           | -              | -                    | -  | <1       | <1      | 2.4        | Pos | Pos                  | Neg | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 7968         |
| 8019         | 3 2    |                | 4.71                      | 4.84           | 4.12           | 4.42               | 4.18           | -              | -                    | -  | <1       | <1      | 2.4        | Pos | Neg                  | Neg | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | Neg | Neg                   | Pos    | Pos | Neg                    | Pos | -        | -        | -        | 8019         |
| 8042         |        |                | -                         | -              | -              | -                  | -              | -              | -                    | -  | -        | -       | -          | -   | -                    | -   |            | -                    | -          | Pos        | Pos        | Neg        | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 8042         |
| 8066         | 1 2    |                | -                         | -              | -              | -                  | -              | -              | -                    | -  | <1       | <1      | 2.5        | -   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 8066         |
| 8068         | 2 1    | 3 4.0          | 6 4.4                     | 4.76           | 3.99           | 4.05               | 4.38           | l              |                      |    | 0        | 0       | 1.86       |     |                      |     | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        |     |                       |        | -   | -                      | -   |          |          |          | 8068         |
| 8165         | 2 3    | !              |                           |                | 3.95           | 3.95               | 3.98           | 1.77           | <1                   | <1 | -        | -       | -          | Pos | Neg                  | Neg | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | Neg | Neg                   | Pos    | -   | -                      | -   | Neg      | Pos      | Neg      | 8165         |
| 8252         | 2 3    | 1 4.4          |                           | 4.77           | 4.42           | 4.2                | 4.23           | -              | -                    | -  |          | -       | -          | -   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 8252         |
| 8260<br>8313 | 3 1    |                |                           | 4.67           | 1.75           | 3.98               | 3.97           | -              | -                    | -  | <1       | <1<br>0 | 2.4        | -   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 8260<br>8313 |
| 8333         | 1 2 3  | 3 4.2<br>1 4.4 |                           | 4.7<br>4.95    | 4.06<br>4.07   | 4.16<br>4.06       | 4.11<br>4.19   | -              | -                    | -  | 0        | U       | 2.51       | -   | -                    | -   | Neg<br>Neg | Neg<br>Neg           | Pos<br>Pos | Pos<br>Pos | Pos<br>Pos | Neg<br>Neg | Noa | Noa                   | Pos    | -   | -                      | -   | -        | -        | -        | 8333         |
| 8397         | 3 1    |                |                           | 4.93           | 4.07           | 4.14               | 4.19           | 1 -            | -                    | -  | <1       | -<br><1 | 2.43       |     | -                    | -   | Neg        | Neg                  | Pos        |            |            | iveg       | Neg | Neg                   |        |     |                        | -   | _        | -        |          | 8397         |
| 8435         | 3 2    |                |                           | 4.67           | 4.11           | 4.16               | 4.04           | 1 -            | -                    |    | 0        | 0       | 2.43       | [   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | 1 - | _                     | -      | [   | _                      | -   | _        |          |          | 8435         |
| 8568         | 1 2    |                |                           | 4.87           | <2             | 4.12               | 4.33           | _              | _                    | _  | -        | -       | -          | _   | _                    | _   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | Nea | Nea                   | Pos    | _   | _                      | _   | _        | _        | _        | 8568         |
| 8626         | 1 3    |                |                           | 5.09           | 4.11           | 4.56               | 4.83           | -              | -                    | -  | 2.13     | 0       | 0          | -   | -                    | -   | Pos        | Neg                  | Neg        | Pos        | Pos        | Neg        | -   | -                     | -      | -   | _                      | -   | -        | -        | _        | 8626         |
| 8628         | 1 3    |                |                           | 4.87           | 4.15           | 4.03               | 4.37           | -              | -                    | -  | 0        | Ö       | 2.47       | -   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      | Pos | Neg                    | Pos | _        | -        | -        | 8628         |
| 8734         | 1 3    |                |                           | 4.61           | 4.44           | 4.23               | 4.45           | -              | -                    | -  | -        | -       | -          | -   | -                    | -   | -          | -                    | -          | -          | -          | -          | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 8734         |
| 8742         | 3 2    | 1 4.0          | 4.41                      | 4.52           | -              | -                  | -              | -              | -                    | -  | -        | -       | -          | -   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 8742         |
| 8756         | 1 2    | 3 -            | -                         | -              | -              | -                  | -              | -              | -                    | -  | -        | -       | -          | -   | -                    | -   | -          | -                    | -          | -          | -          | -          | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 8756         |
| 8766         | 3 1    | 4.1            | 4.69                      | 4.85           | 3.96           | 4.3                | 4.03           | -              | -                    | -  | 0        | 0       | 2.48       | -   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      | -   | -                      | -   | Neg      | Pos      | Neg      | 8766         |
| 8862         | 2 3    | 1              |                           |                |                |                    |                | -              | -                    | -  | -        | -       |            | -   | -                    | -   | l          |                      |            | Pos        | Pos        | Neg        | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 8862         |
| 8918         | 1 2    |                |                           | 4.81           | 4.15           | 4.08               | 4.13           |                | -                    | -  | 0        | 0       | 2.41       |     |                      |     | Neg        | Neg                  | Pos        | -          | -          |            |     |                       | -      |     |                        | -   | l        |          |          | 8918         |
| 8955         | 1 2    |                |                           | 4.94           | 4.34           | 4.08               | 4.58           | 3.04           | <2                   | <2 | <1       | <1      | 2.53       | Pos | Neg                  | Neg | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | Neg | Neg                   | Pos    | Pos | Neg                    | Pos | Neg      | Pos      | Neg      | 8955         |
| 9002         |        |                |                           | 4.7            | 4.21           | 3.98               | 4.38           | 1.64           | 4.13                 | 0  | 0        | 0       | 2.52       | -   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      | -   | -                      | -   | -<br>N   | -<br>D   | -<br>N   | 9002         |
| 9034<br>9078 | 2 1 3  |                | 4.5<br>3 5.12             | 4.7<br>5.11    | 4.2<br>3.9     | 4.2<br><b>4.84</b> | 4.4<br>4.7     | -              | -                    | -  | -        | -       | -          | -   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      | -   | -                      | -   | Neg      | Pos      | Neg      | 9034<br>9078 |
| 9217         | 3 2    |                |                           | 4.82           | 4.06           | 4.09               | 4.7            | -              | -                    | -  | _        | -       |            | 1   | -                    | -   | [          |                      | -          | -          |            | -          | Nea | Pos                   | Neg    | 1   |                        | -   | _        |          | - [      | 9217         |
| 9269         | 3 1    | -              |                           | 02             | 00             | 05                 | 55             | _              | _                    | _  | _        | _       | _          | _   | _                    | _   | _          | _                    | _          | Pos        | Pos        | Neg        | -   | -                     | - Incg | _   | _                      | _   | _        | _        | _        | 9269         |
| 9429         | 3 1    |                | 4.38                      | 4.81           | -              | -                  | -              | _              | -                    | -  | -        | -       | -          | -   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 9429         |
| 9436         | 3 1    |                |                           | 4.85           | 3.6            | 4.15               | 4.36           | 2.1            | <1                   | <1 | <1       | <1      | 2.09       | Pos | Neg                  | Neg | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | Neg | Neg                   | Pos    | -   | -                      | -   | -        | -        | -        | 9436         |
| 9441         | 1 3    | 2 4.0          | 3 4.43                    | 4.62           | 3.82           | 3.94               | 4.08           | -              | -                    | -  | <1       | <1      | 2.51       | -   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 9441         |
| 9453         | 1 2    | 3 4.0          | 3 4.31                    | 4.64           | 4.04           | 4.14               | 4.13           | -              | -                    | -  | -        | -       | -          | -   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 9453         |
| 9512         | 3 2    |                |                           | 4.5            | 4.1            | 4.1                | 4.1            | -              | -                    | -  | -        | -       | -          | -   | -                    | -   | -          | -                    | -          | -          | -          | -          | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 9512         |
| 9555         | 2 3    | 1 4.1          |                           | 4.8            | 3.81           | 4.26               | 4.21           | -              | -                    | -  | -        | -       | -          | -   | -                    | -   |            | -                    | -          | -          | -          | -          | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 9555         |
| 9662         | 3 2    | 1 4.1          |                           | 4.7            | 4.2            | 4.3                | 4.23           | -              | -                    | -  | <1       | <1      | 2.23       | -   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      |     |                        |     | -        | -        | -        | 9662         |
| 9716         | 1 3    |                |                           | 4.78           | - 70           | -                  | -              | -              | -                    | -  | -        | -       | -          | -   | -                    | -   | Neg        | Neg                  | Pos        | Pos        | Pos        | Neg        | -   | -                     | -      | Pos | Neg                    | Pos | -        | -        | -        | 9716         |
| 9747         | 2 3    | 4.0            |                           | 4.6            | 3.76           | 4.06               | 4.47           | -              | -                    | -  | -        | -       | -          | -   | -                    | -   | -          | -                    | -          | -          | -          | -          | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | 9747         |
| 9890<br>9903 | 2 1 3  |                |                           | 4.91<br>4.93   | 4.3<br>3.83    | 4.38<br>4.53       | 4.45<br>4.56   | _              | -                    | -  | _        | -       |            |     | -                    | -   | Neg        | Neg                  | Pos        | Neg        | Pos        | Neg        | 1 - | -                     | -      |     | -                      | -   | _        | -        | -        | 9890<br>9903 |
| 9950         | 3 1    |                | - 4.03                    | 4.33           | -              | -                  | -              | _              | -                    | -  | _        | _       | -          | -   | -                    | -   | -          | -                    | -          | - INCG     | -          | -          | _   |                       | -      | -   | -                      | -   | _        |          |          | 9950         |
|              | ,      | -1             |                           |                |                |                    |                |                |                      |    |          |         |            |     |                      |     |            |                      |            | 1          |            |            |     |                       |        |     |                        |     |          |          |          | ,            |
| N            |        | 120            | 120                       | 120            | 104            | 105                | 105            | 16             | 17                   | 17 | 67       | 67      | 67         | 25  | 25                   | 25  | 98         | 98                   | 98         | 114        | 114        | 114        | 24  | 24                    | 24     | 19  | 19                     | 19  | 14       | 14       | 14       | N            |
| Min          | 1      | 3.1            |                           | 3.6            | 0              | 2.19               | 0              | 0              | 0                    | 0  | 0        | 0       | 0          | -   | -                    | -   | -          | -                    | -          | -          | -          | -          | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | Min          |
| Max          |        | 4.7            |                           | 5.32           | 4.7            | 5.02               | 4.84           | 3.04           | 4.13                 | 0  | 2.13     | 0       | 2.7        | -   | -                    | -   | -          | -                    | -          | -          | -          | -          | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | Max          |
| Med          |        | 4.2            |                           | 4.81           | 4.11           | 4.16               | 4.36           | 1.97           | 0                    | 0  | 0        | 0       | 2.43       | -   | -                    | -   | -          | -                    | -          | -          | -          | -          | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | Med          |
| m            |        | 4.23<br>0.13   |                           | 4.814<br>0.152 | 4.085<br>0.224 | 4.193<br>0.175     | 4.345<br>0.232 | 1.890<br>0.492 | 0                    | 0  | 0        | 0       | 2.418      | pos | neg                  | neg | neg        | neg                  | pos        | pos        | pos        | neg        | neg | neg                   | pos    | pos | neg                    | pos | neg      | pos      | neg      | m            |
| S<br>F+      | 1      | 0.13           | 4 0.235<br>0              | 0.152          | 0.224          | 0.175              | 0.232          | 0.492          | 1                    | 0  | 1        | 0       | 0.114<br>0 | - 0 | 2                    | 0   | 1          | 0                    | 0          | 0          | 0          | 4          | 0   | 3                     | 0      | - 0 | 0                      | 0   | 0        | 0        | 1        | F+           |
| F-           |        | 0              | 0                         | 0              | 6              | 0                  | 1              | l ĭ            | Ö                    | 0  | Ö        | 0       | 2          | 0   | 0                    | 0   | Ö          | 0                    | 3          | 3          | 5          | 0          | 0   | 0                     | 3      | 2   | 0                      | 1   | 0        | 1        | ò        | F-           |
| .<           | 1      | 2              | 1                         | 2              | 9              | 2                  | 1              | Ö              | Ö                    | Ö  | ő        | Ö       | 2          | -   | -                    | -   | -          | -                    | -          | -          | -          | -          | -   | -                     | -      | -   | -                      | -   | _        | -        | -        | . <          |
| >            |        | 2              | 0                         | 0              | 0              | 2                  | 0              | 0              | 0                    | 0  | 0        | 0       | 0          | -   | -                    | -   | -          | -                    | -          | -          | -          | -          | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | >            |
| < OK         |        | 3.9            |                           | 4.45           | 3.36           | 3.77               | 3.50           | 0.95           | 0                    | 0  | 0        | 0       | 2.08       | -   | -                    | -   | -          | -                    | -          | -          | -          | -          | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | < OK         |
| > OK         |        | 4.7            | 5.41                      | 5.32           | 4.70           | 4.72               | 4.84           | 3.05           | 0                    | 0  | 0        | 0       | 2.70       | -   | -                    | -   | -          | -                    | -          | -          | -          | -          | -   | -                     | -      | -   | -                      | -   | -        | -        | -        | > OK         |

N = number of analyses performed Min = lowest reported result

Max = highest reported result Median = median value

m = mean value s = standard deviation F+ = false positive <= low outlier F- = false negative >= high outlier

< OK = lowest accepted value >OK = highest accepted value

#### Annex 2 Z-scores of all participants - January 2018

Z-scores are calculated according to the formula: z = (x-m)/s, where x = result of the individual laboratory, m = mean of the results of all participating laboratories, s = standard deviation of the results from all participating laboratories. Correct negative results in quantitative analyses and correct results in qualitative analyses have obtained a z-score of zero. False results did not generate a z-score. Z-scores from outliers are not real z-scores, but are a practical means to express the results from the outliers. Very low and high z-scores are here limited to -4 and +4 respectively.

 $\square 2 < |z| \leq 3$ ,  $\square z|>3$ 

| Lab<br>no.                   |                   | ial               | Aeı                     | robic mic<br>anisms 3              | ro-             | Enter                    | obacteri                            | aceae                     |        | rmotoler<br>npylobac    |                         | Listeria                         | топосу                  | togenes                          |   | motole<br>pyloba |   |             | isteria<br>ocytoge |             | Sa          | lmone       | lla         |   | herichi<br>57 (VT- |   |   | thogei |   |   | ersinia |   | Lab<br>no.                   |
|------------------------------|-------------------|-------------------|-------------------------|------------------------------------|-----------------|--------------------------|-------------------------------------|---------------------------|--------|-------------------------|-------------------------|----------------------------------|-------------------------|----------------------------------|---|------------------|---|-------------|--------------------|-------------|-------------|-------------|-------------|---|--------------------|---|---|--------|---|---|---------|---|------------------------------|
|                              | ΑE                | ВС                | Α                       | В                                  | С               | Α                        | В                                   | С                         | Α      | В                       | С                       | Α                                | В                       | С                                | Α | В                | С | Α           | В                  | С           | Α           | В           | С           | Α | В                  | С | Α | В      | С | Α | В       | С |                              |
|                              | 3 2               | 2 1<br>1 2        | 0.372<br>-0.001         | 0.300                              | 1.492<br>0.833  | -0.781<br>0.469<br>0.514 | 1.982<br>0.841                      | -1.786<br>1.489<br>0.799  | 0.400  | 0.000                   | 0.000                   | 0.000                            |                         | 0.540                            |   | •                | • | 0           | 0                  | 0           | 0 0         | 0 0         | 0 0         | 0 | 0                  | 0 |   |        | • |   |         |   | 1254<br>1545<br>1594         |
| 1970<br>2035<br>2043<br>2050 | 3 2               | 1 2<br>2 1        |                         | -0.338<br>-0.423                   |                 | -4.000                   | 1.868<br>-3.952<br>0.270            | -3.639                    | 0.163  | 0.000                   | 0.000                   | 0.000                            |                         |                                  | 0 | 0                | 0 | 0           | 0                  | 0           | 0           | 0           | 0 0         |   |                    |   | 0 | 0      | 0 | 0 | 0       | 0 | 1970<br>2035<br>2043<br>2050 |
| 2058<br>2072                 | 1 2               | 2 3<br>1 3        | <b>-4.000</b><br>-0.001 | -1.998<br>0.513<br>-0.338          | -4.000          |                          | 0.841                               |                           |        | 0.000                   |                         | 0.000<br>0.000<br>0.000          | 0.000<br>0.000<br>0.000 | -0.161<br><b>-2.964</b><br>0.365 | 0 | 0                | 0 | 0<br>0<br>0 | 0<br>0<br>0        | 0<br>0<br>0 | 0 0         | 0 0         | 0 0         |   |                    |   |   | 0      | 0 |   |         |   | 2058<br>2072<br>2151         |
| 2221<br>2324<br>2386         | 1 3               | 3 2<br>1 2        | 0.372                   | -0.338<br>-0.551                   | 0.635           |                          |                                     | 0.541                     |        |                         |                         | 0.000                            | 0.000                   | 0.189                            |   |                  |   | 0           | 0                  | 0           | 0           | 0           | 0           |   |                    |   |   |        |   |   |         |   | 2221<br>2324<br>2386         |
| 2637<br>2704                 | 3 2               | 1 2<br>3 1        | 1.118                   | 2.343<br>0.002<br>-0.338<br>-0.509 | -0.685<br>0.437 | 0.514<br>-0.826          | 3.009<br>0.442<br>-0.186<br>-0.015  | -0.494<br>0.972           |        |                         |                         | 0.000                            |                         | 0.365                            |   |                  |   | 0<br>0<br>0 | 0<br>0<br>0        | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 |   |                    |   |   |        |   |   |         |   | 2402<br>2637<br>2704<br>2745 |
| 2764<br>2842<br>2920         | 3 ′               | 1 2<br>1 2        | -0.299                  | 0.768                              |                 | 0.112                    | -1.270<br>1.183                     |                           |        | 0.000                   | 0.000                   |                                  | 0.000                   |                                  | 0 | 0                | 0 | 0           | 0                  | 0           | 0           | 0           | 0           | 0 | 0                  | 0 | 0 | 0      | 0 | 0 |         | 0 | 2764<br>2842<br>2920         |
|                              | 2 3               | 3 1<br>1 2        | -0.194<br>-0.001        | 1.875<br>-1.768<br>0.300<br>-0.160 | 0.327<br>1.228  | 0.129<br><b>2.165</b>    | -0.186<br>-0.647<br>0.955<br>-0.386 | -0.096<br>1.101           |        |                         |                         | 0.000<br>0.000<br>0.000          | 0.000                   |                                  | 0 | 0                | 0 | 0<br>0<br>0 | 0<br>0<br>0        | 0 0         | 0<br>0<br>0 | 0<br>0<br>0 | 0 0         | 0 | 0                  | 0 | 0 | 0      | 0 | 0 | 0       | 0 | 2944<br>3031<br>3057<br>3155 |
| 3159<br>3305                 | 3 2               | 2 1<br>2 1        | -0.076<br>1.715         | -0.253<br>0.172<br>-0.721          | -0.289<br>0.305 | <b>-3.236</b> 0.514      | 0.042<br>1.355<br>-1.670            | -0.106<br>0.928           |        |                         |                         | 0.000<br>0.000<br>0.000<br>0.000 | 0.000<br>0.000          | 0.627<br>-1.037                  | 0 | 0                | 0 | 0 0         | 0 0                | 0 0         | 0           | 0 0         | 0 0         | 0 | 0                  | 0 |   |        |   |   |         |   | 3159<br>3305<br>3327         |
|                              | 1 2 2             | 2 3<br>3 1        |                         | -0.764                             |                 | -1.763                   | -0.871<br>-0.928                    | 0.239                     |        |                         |                         | 0.000                            |                         | -1.825                           |   |                  |   | 0           | 0                  | 0           | 0           | 0           | 0           |   |                    |   |   | 0      | 0 |   |         |   | 3347<br>3457<br>3587         |
| 3626<br>3868                 | 2 1               | 1 3<br>2 3        | -0.225<br>-0.598        | -0.764<br>-0.594<br>1.888          | -0.355          | -0.826                   |                                     | 0.024<br>-0.623<br>-0.838 | 0.427  | 0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000          | 0.000<br>0.000<br>0.000 | -0.161                           | 0 | 0                | 0 | 0<br>0<br>0 | 0<br>0<br>0        | 0<br>0<br>0 | 0 0 0       | 0<br>0<br>0 | 0 0         |   |                    |   |   |        |   |   |         |   | 3595<br>3626<br>3868<br>3878 |
| 3923<br>4064                 | 3 2               | 1 2<br>3 1        | 1.491<br>-0.225         | 3.747<br>-0.849<br>-0.126          | 0.503<br>-0.091 | 0.067                    | -0.471<br>-0.243<br>0.442           | 0.110                     |        |                         |                         | 0.000                            | 0.000                   | -0.336                           |   |                  |   | 0           | 0                  | 0           | 0           | 0           | 0           |   |                    |   | 0 | 0      | 0 |   |         |   | 3923<br>4064<br>4100         |
| 4171<br>4246<br>4288         | 2 ′<br>3 ′<br>1 3 | 1 3<br>1 2<br>3 2 | 0.521                   | 0.130                              |                 |                          | 0.727<br>-0.814                     |                           |        |                         |                         |                                  |                         |                                  |   |                  |   | 0           | 0                  | 0           | 0           | 0           | 0           | 0 | 0                  | 0 |   |        |   |   |         |   | 4171<br>4246<br>4288         |
| 4339<br>4352<br>4400<br>4560 | 1 3               | 3 2<br>1 3        |                         | -1.402<br>-0.211                   |                 | 0.648                    | 0.042<br>0.213                      | 1.058<br>-1.054           |        |                         |                         | 0.000                            | 0.000                   |                                  | 0 | 0                | 0 | 0 0         | 0                  | 0 0         | 0           | 0 0         | 0 0         | 0 | 0                  | 0 | 0 | 0      | 0 | 0 | 0       | 0 | 4339<br>4352<br>4400<br>4560 |
| 4562                         | 1 2               | 2 3               |                         | -0.083<br>0.981                    | 0.173<br>0.503  | 0.290                    |                                     | -0.278<br>0.756           | -0.854 | 0.000                   | 0.000                   | 0.000<br>0.000                   | 0.000<br>0.000          |                                  | 0 | 0                | 0 | 0           | 0                  | 0           | 0           | 0<br>0<br>0 | 0<br>0<br>0 | 0 | 0                  |   | 0 | 0      | 0 | 0 | 0       |   | 4562<br>4633                 |

| Lab<br>no.           | Vial                    |                     | robic mic<br>anisms 3     |                        | Enter           | obacteria                       | aceae           |        | rmotole<br>npyloba |       | Listeria | топосу         | togenes |   | motole<br>pyloba |   |             | Listeria<br>ocytog |             | Sa          | lmone       | lla         |   | nerichia<br>57 (VT- |   |   | thoge<br>brio s |   |   | ersinia<br>erocolit |   | Lab<br>no.           |
|----------------------|-------------------------|---------------------|---------------------------|------------------------|-----------------|---------------------------------|-----------------|--------|--------------------|-------|----------|----------------|---------|---|------------------|---|-------------|--------------------|-------------|-------------|-------------|-------------|---|---------------------|---|---|-----------------|---|---|---------------------|---|----------------------|
|                      | АВС                     | Α                   | В                         | С                      | Α               | В                               | С               | Α      | В                  | С     | Α        | В              | С       | Α | В                | С | Α           | В                  | С           | Α           | В           | С           | Α | В                   | С | Α | В               | С | Α | В                   | С |                      |
| 4664                 | 3 1 2                   |                     | 1.492<br>0.215            |                        |                 | -0.357<br>1.355                 |                 |        |                    |       | 0.000    | 0.000          | -0.511  |   |                  |   | 0           | 0<br>0             | 0<br>0      | 0           | 0<br>0      | 0<br>0      |   |                     |   | 0 | 0               | 0 |   |                     |   | 4635<br>4664         |
| 4817                 | 2 3 1<br>3 1 2<br>1 3 2 |                     | 0.981<br>-0.126           | -0.619<br><b>3.340</b> | -1.897          | -0.300                          | 2.135           | -0.712 | 0.000              | 0.000 |          | 0.000<br>0.000 |         | 0 | 0                | 0 | 0           | 0                  | 0<br>0      | 0           | 0<br>0      | 0           | 0 | 0                   | 0 | 0 | 0               | 0 | 0 | 0                   | 0 | 4683<br>4817<br>4840 |
| 4879<br>4889<br>4944 | 1 3 2<br>1 3 2<br>3 1 2 |                     | -0.351<br>-0.126          |                        |                 | 0.213<br>0.042                  |                 |        |                    |       |          | 0.000          |         |   |                  |   | 0           | 0                  | 0           | 0           | 0           | 0           |   |                     |   | 0 | 0               | 0 |   |                     |   | 4879<br>4889<br>4944 |
| 4980<br>5018         | 2 3 1<br>2 3 1<br>2 3 1 | 0.372               | -0.806                    |                        | 0.871           | -0.586<br>-0.072                | -1.011          |        |                    |       | 0.000    | 0.000<br>0.000 | 0.189   | 0 | 0                | 0 | 0           | 0                  | 0           | 0           | 0           | 0           |   |                     |   |   |                 |   | 0 | 0                   | 0 | 4980<br>5018<br>5028 |
| 5100<br>5128         | 3 2 1<br>2 3 1          | -4.000              | 0.938<br>-0.977           |                        |                 | 1.005                           | 0.00=           |        |                    |       |          |                |         |   |                  |   | 0           | 0                  | 0           | 0           | 0           | 0           |   |                     |   |   |                 |   | U | U                   | U | 5100<br>5128         |
| 5220                 | 1 2 3<br>3 1 2<br>2 3 1 | -1.716              |                           | -1.411<br>-1.675       |                 | <b>4.000</b><br>-0.528<br>1.126 | 0.670           | -0.183 | 0.000              | 0.000 |          | 0.000<br>0.000 |         | 0 | 0                | 0 | 0           | 0<br>0             | 0           | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 |   |                     |   |   |                 |   |   |                     |   | 5182<br>5204<br>5220 |
| 5333                 | 2 3 1<br>2 3 1<br>1 2 3 |                     | 0.045                     | -0.223                 | 0.290           | -0.471                          | -1.054          |        |                    |       |          |                |         |   |                  |   | 0           | 0                  | 0           | 0           | 0           | 0           |   |                     |   |   |                 |   |   |                     |   | 5221<br>5329<br>5333 |
| 5352                 | 2 1 3<br>1 2 3<br>2 3 1 | 1.192               | 1.619                     | 1.426                  | 1.139           | 0.955                           | 2.135           |        |                    |       | 0.000    | 0.000          | 0.627   | 0 | 0                | 0 | 0           | 0                  | 0           | 0           | 0           | 0           |   |                     |   |   |                 |   |   |                     |   | 5342<br>5352<br>5447 |
| 5545<br>5553<br>5615 | 2 3 1<br>3 1 2<br>2 3 1 |                     | 0.002<br>0.045            |                        |                 | 0.727<br>-0.186<br>0.727        | -0.020          |        | 0.000              | 0.000 |          |                |         | 0 | 0                | 0 | 0<br>0<br>0 | 0<br>0<br>0        | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 | 0 | 0                   | 0 |   |                 |   |   |                     |   | 5545<br>5553<br>5615 |
| 5632<br>5701<br>5801 | 3 1 2<br>1 3 2<br>2 3 1 | -0.404              | 1.577<br>0.862<br>-1.402  |                        | -4.000          | -1.099                          | -0.838          |        |                    |       |          |                |         |   |                  |   |             |                    |             |             | 0           | 0           |   |                     |   |   |                 |   |   |                     |   | 5632<br>5701<br>5801 |
| 5808<br>5883<br>5950 | 3 2 1<br>3 1 2<br>2 3 1 | -0.299              | 1.394<br>-0.594<br>-0.594 | -0.157                 | 0.603           | -0.357<br>-0.129                |                 | 0.630  | 0.000              | 0.000 |          | 0.000          |         | 0 | 0                | 0 | 0           | 0                  | 0           | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 | 0 | 0                   | 0 | 0 | 0               | 0 | 0 | 0                   | 0 | 5808<br>5883<br>5950 |
| 6109                 | 1 2 3<br>3 1 2<br>3 1 2 |                     | <b>2.173</b> 1.917        |                        | -0.915          | 1.754                           | 0.713           |        |                    |       |          |                |         |   |                  |   | 0           | 0                  |             | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 | 0 | 0                   | 0 |   |                 |   |   |                     |   | 5993<br>6109<br>6175 |
| 6224<br>6232<br>6253 | 1 2 3<br>1 3 2<br>1 2 3 |                     |                           | -1.550<br>-0.382       |                 | -1.128<br>-0.266                |                 |        |                    |       |          |                |         |   |                  |   | 0           | 0                  | 0           | 0           | 0           | 0           |   |                     |   |   |                 |   |   |                     |   | 6224<br>6232<br>6253 |
|                      | 3 1 2<br>1 2 3<br>1 3 2 | <b>3.654</b> -0.896 | -4.000                    | -0.817<br>-1.411       | -0.736<br>0.067 | <b>-4.000 -2.411</b> 0.213      | 0.153<br>-0.838 |        |                    |       | 0.000    | 0.000          | -1 431  |   |                  |   | 0           | 0                  | 0           | 0 0         | 0 0         | 0 0         |   |                     |   | 0 | 0               | 0 |   |                     |   | 6343<br>6352<br>6368 |
| 6443<br>6456         | 1 3 2<br>1 3 2<br>2 1 3 |                     |                           | -0.223                 |                 | -0.471                          |                 |        |                    |       | 0.000    | 5.000          | 1.401   |   |                  |   | 0           | 0                  | 0           | 0           | 0           | 0           |   |                     |   |   | Ū               | ŭ |   |                     |   | 6443<br>6456<br>6594 |
| 6658<br>6686         | 2 3 1<br>2 3 1          |                     | 1.364<br>0.130            | <b>-4.000</b> 0.701    |                 | 1.069<br>-0.643                 |                 |        |                    |       |          | 0.000          |         |   |                  |   | 0           | 0                  | 0           |             | 0           | 0           |   |                     |   |   |                 |   |   |                     |   | 6658<br>6686         |
| 6762<br>6870         | 2 3 1<br>1 3 2<br>3 2 1 | 1.565               | -0.466                    | 0.503                  | 1.273           | -0.015                          |                 |        |                    |       | 0.000    | 0.000          | 0.102   |   |                  |   | 0           | 0                  | 0           | 0           | 0           | 0           |   |                     |   |   |                 |   |   |                     |   | 6720<br>6762<br>6870 |
| 6971<br>7182         | 2 1 3<br>3 2 1<br>2 3 1 | 0.148               |                           | -1.015                 |                 | <b>2.267</b> -0.985             |                 |        |                    |       |          |                |         |   |                  |   | 0           | 0                  | 0           |             |             |             |   |                     |   |   |                 |   |   |                     |   | 6944<br>6971<br>7182 |
| 7242                 | 3 2 1<br>2 1 3<br>1 3 2 |                     | -0.040<br>0.726           |                        | -4.000          | 0.270                           | -1.485          |        |                    |       | 0.000    | 0.000          | -0.161  | 0 |                  | 0 | 0           | 0                  | 0           | 0           | 0           | 0           |   |                     |   |   |                 |   |   |                     |   | 7232<br>7242<br>7248 |

| Lab<br>no.           | Vial                             |                                | obic mic                             | -                          | Enter                   | obacteria                                  | nceae            |                     | rmotoler<br>npylobac |                | Listeria | топосу                  | togenes                   |   | notole<br>pyloba |   |             | isteria.<br>ocytoge |             | Sa          | lmonel           | la          |   | erichia<br>7 (VT-r |   |   | thoger |   |   | ersinia<br>rocolit |   | Lab<br>no.                   |
|----------------------|----------------------------------|--------------------------------|--------------------------------------|----------------------------|-------------------------|--------------------------------------------|------------------|---------------------|----------------------|----------------|----------|-------------------------|---------------------------|---|------------------|---|-------------|---------------------|-------------|-------------|------------------|-------------|---|--------------------|---|---|--------|---|---|--------------------|---|------------------------------|
|                      | АВС                              | Α                              | В                                    | С                          | Α                       | В                                          | С                | Α                   | В                    | С              | Α        | В                       | С                         | Α | В                | С | Α           | В                   | С           | Α           | В                | С           | Α | В                  | С | Α | В      | С | Α | В                  | С |                              |
| 7282<br>7330         | 1 2 3<br>3 1 2<br>1 2 3<br>2 3 1 | -0.374<br>-0.971               | -0.083<br>1.960<br>-0.551<br>0.369   | 1.031<br>-0.751            |                         | 0.613<br>-0.528                            |                  | 0.590               | 0.000                | 0.000          | 0.000    | 0.000                   | -0.424                    | 0 | 0                | 0 | 0<br>0<br>0 | 0<br>0<br>0         | 0<br>0<br>0 | 0 0         | 0 0 0            | 0 0         | 0 |                    | 0 |   |        |   |   |                    |   | 7253<br>7282<br>7330<br>7334 |
| 7564<br>7627<br>7688 | 2 3 1<br>1 2 3<br>2 1 3          | -0.299<br>-0.225               | 0.087<br>-0.423                      | <b>-2.401</b><br>-0.487    | 0.112                   | 0.042                                      | 0.239            |                     |                      |                |          | 0.000                   |                           | 0 | 0                | 0 | 0           | 0                   | 0           | 0           | 0                | 0           | 0 | 0                  | 0 |   |        |   | 0 | 0                  |   | 7564<br>7627<br>7688         |
| 7750<br>7825         | 2 3 1<br>2 3 1<br>1 2 3<br>1 2 3 | -0.001<br>0.730                | 0.428<br>-1.402<br>1.228<br>0.343    | -0.355<br>0.793            | 1.161                   | 0.270<br><b>-2.086</b><br>-0.757           | 0.149            |                     |                      |                | 0.000    | 0.000                   | 1.381<br>0.803            | 0 | 0                | 0 | 0           | 0 0                 | 0 0 0       | 0<br>0<br>0 | 0 0 0            | 0<br>0<br>0 | 0 |                    |   |   |        |   |   |                    |   | 7728<br>7750<br>7825<br>7876 |
| 7882<br>7930<br>7940 | 2 3 1<br>3 2 1<br>3 1 2          | 1.267<br>0.670<br><b>3.952</b> | -0.338<br>-0.126<br>-0.636           | 0.767<br>0.437<br>-0.025   | 0.871                   | 0.613                                      | -0.106           |                     |                      |                | 0.000    | 0.000                   | 0.540                     |   |                  |   | 0           | 0                   | 0           | 0           | 0                | 0           |   |                    |   |   |        |   |   |                    |   | 7882<br>7930<br>7940         |
| 7968<br>8019         | 2 1 3<br>2 1 3<br>3 2 1<br>1 3 2 | -1.418                         | 0.343<br>-0.040<br>0.768             | -0.421                     | -0.245                  | <b>2.895</b><br>-0.700<br>1.297            | 0.067            |                     |                      |                |          | 0.000<br>0.000<br>0.000 | 0.715<br>-0.161<br>-0.161 | 0 | 0                | 0 | 0<br>0<br>0 | 0<br>0<br>0         | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0 | 0 | 0                  | 0 | 0 | 0      | 0 |   |                    |   | 7962<br>7968<br>8019<br>8042 |
| 8066<br>8068<br>8165 | 1 2 3<br>2 1 3<br>2 3 1          |                                |                                      |                            |                         | -1.384                                     | -1.571           | -0.244              | 0.000                | 0.000          |          | 0.000<br>0.000          |                           | 0 | 0                | 0 | 0 0 0       | 0<br>0<br>0         | 0 0 0       | 0 0 0       | 0<br>0<br>0      | 0<br>0<br>0 | 0 | 0                  | 0 |   |        |   | 0 | 0                  | 0 | 8066<br>8068<br>8165         |
| 8260<br>8313         | 2 3 1<br>3 1 2<br>1 2 3<br>2 3 1 | 0.074<br>-0.150                | -0.168<br>-0.806<br>-0.806<br>0.385  | -0.949<br>-0.751           | <b>-4.000</b><br>-0.111 | 0.042<br>-1.213<br>-0.186<br>-0.757        | -1.614<br>-1.011 |                     |                      |                |          | 0.000<br>0.000          | -0.161<br>0.803           |   |                  |   | 0<br>0<br>0 | 0<br>0<br>0<br>0    | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0      | 0<br>0<br>0 | 0 | 0                  | 0 |   |        |   |   |                    |   | 8252<br>8260<br>8313<br>8333 |
| 8435<br>8568         | 3 1 2<br>3 2 1<br>1 2 3<br>1 3 2 | -0.036<br>1.192                | -0.357                               | 0.371                      | 0.099                   | -0.300<br>-0.195<br>-0.414<br><b>2.096</b> | -1.306           |                     |                      |                |          | 0.000<br>0.000<br>0.000 | 0.102<br>0.100            |   |                  |   | 0<br>0<br>0 | 0<br>0<br>0         | 0<br>0<br>0 | 0 0         | 0<br>0<br>0      | 0 0         | 0 | 0                  | 0 |   |        |   |   |                    |   | 8397<br>8435<br>8568<br>8626 |
| 8628<br>8734<br>8742 | 1 3 2<br>1 3 2<br>3 2 1          | 0.715<br>0.521                 | -1.718<br>-0.977<br>-0.509           | 0.351<br>-1.345            | 0.273                   | -0.904<br>0.213                            | 0.101            |                     |                      |                | 0.000    |                         | 0.464                     |   |                  |   | 0           | 0                   | 0           | 0           | 0                | 0           |   |                    |   | 0 | 0      | 0 |   |                    |   | 8628<br>8734<br>8742         |
| 8766<br>8862         | 1 2 3<br>3 1 2<br>2 3 1          |                                | 0.683                                |                            |                         | 0.613                                      |                  |                     |                      |                |          | 0.000                   |                           |   |                  |   | 0           | 0                   | 0           | 0           | 0                | 0           |   |                    |   |   |        |   | 0 | 0                  |   | 8756<br>8766<br>8862         |
| 8955<br>9002         | 1 2 3<br>1 2 3<br>1 2 3<br>2 1 3 | -0.195<br>0.223                | -0.892<br>-1.581<br>-0.679<br>-0.126 | 0.826<br>-0.751            | 1.148<br>0.558          | -0.643<br>-0.648<br>-1.213<br>0.042        | 1.015<br>0.153   | <b>2.341</b> -0.509 | 0.000                | 0.000<br>0.000 | 0.000    | 0.000<br>0.000<br>0.000 | -0.073<br>0.986<br>0.890  | 0 | 0                | 0 | 0<br>0<br>0 | 0<br>0<br>0<br>0    | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0      | 0<br>0<br>0 | 0 | 0                  | 0 | 0 | 0      | 0 | 0 | 0                  | 0 | 8918<br>8955<br>9002<br>9034 |
| 9217<br>9269         | 2 1 3<br>3 2 1<br>3 1 2<br>3 1 2 | -1.269                         | <b>2.513</b> -0.764 -0.636           | 0.041                      |                         | <b>3.694</b><br>-0.586                     |                  |                     |                      |                |          |                         |                           |   |                  |   | 0           | 0                   | 0           | 0           | 0                | 0           | 0 |                    |   |   |        |   |   |                    |   | 9078<br>9217<br>9269<br>9429 |
| 9436<br>9441<br>9453 | 3 1 2<br>1 3 2<br>1 2 3          | 0.372<br>-1.120<br>-1.120      | 0.683<br>-0.423<br>-0.934            | 0.239<br>-1.279<br>-1.147  | -1.183<br>-0.201        | -0.243<br>-1.441<br>-0.300                 | -1.140<br>-0.925 | 0.427               | 0.000                | 0.000          |          | 0.000<br>0.000          |                           | 0 | 0                | 0 | 0 0         | 0<br>0<br>0         | 0<br>0<br>0 | 0 0 0       | 0<br>0<br>0      | 0 0         | 0 | 0                  | 0 |   |        |   |   |                    |   | 9436<br>9441<br>9453         |
| 9555<br>9662<br>9716 | 3 2 1<br>2 3 1<br>3 2 1<br>1 3 2 | -0.821<br>-0.374<br>-0.225     | -0.551<br>0.045<br>-0.211<br>-0.509  | -0.091<br>-0.751<br>-0.223 | -1.227<br>0.514         | -0.528<br>0.385<br>0.613                   | -0.580<br>-0.494 |                     |                      |                | 0.000    | 0.000                   | -1.650                    |   |                  |   | 0           | 0                   | 0           | 0           | 0                | 0           |   |                    |   | 0 | 0      | 0 |   |                    |   | 9512<br>9555<br>9662<br>9716 |
| 9890<br>9903         | 2 3 1<br>2 1 3<br>2 3 1<br>3 1 2 |                                | -1.019<br>1.109<br>0.428             |                            | 0.960                   | -0.757<br>1.069<br>1.925                   | 0.454            |                     |                      |                |          |                         |                           |   |                  |   | 0           | 0                   | 0           |             | 0                | 0           |   |                    |   |   |        |   |   |                    |   | 9747<br>9890<br>9903<br>9950 |

# Internal and external control for microbiological analyses of food and drinking water

All analytical activities require work of a high standard that is accurately documented. For this purpose, most laboratories carry out some form of internal quality assurance, but their analytical work also has to be evaluated by an independent party. Such external quality control of laboratory competence is commonly required by accreditation bodies and can be done by taking part in proficiency testing (PT).

In a proficiency test, identical test material is analysed by a number of laboratories using their routine methods. The organiser evaluates the results and compiles them in a report.

# The National Food Agency's PT program offers

- External and independent evaluation of laboratories analytical competence.
- > Improved knowledge of analytical methods with respect to various types of organisms.
- > Expert support.
- ➤ Tool for inspections regarding accreditation.
- > Free extra material for follow-up analyses.

For more information visit our website: www2.slv.se/absint

# The National Food Agency's reference material

As a complement to the proficiency testing, but without specific accreditation, the National Food Agency also manufactures a number of reference materials (RM) for internal quality control of food and drinking water microbiological analyses, including pathogens.

More information is available on our website: www.livsmedelsverket.se/en/RM-micro